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Abstract: In this study, we consider the estimation of partially linear models for spa-

tial data distributed over complex domains. We use bivariate splines over triangu-

lations to represent the nonparametric component on an irregular two-dimensional

domain. The proposed method is formulated as a constrained minimization problem

that does not require constructing finite elements or locally supported basis func-

tions. Thus, it allows an easier implementation of piecewise polynomial represen-

tations of various degrees and various smoothness over an arbitrary triangulation.

Moreover, the constrained minimization problem is converted to an unconstrained

minimization using a QR decomposition of the smoothness constraints, enabling

us to develop a fast and efficient penalized least squares algorithm for fitting the

model. The estimators of the parameters are proved to be asymptotically normal

under some regularity conditions. The estimator of the bivariate function is consis-

tent, and its rate of convergence is also established. The proposed method enables

us to construct confidence intervals and permits inferences for the parameters. The

performance of the estimators is evaluated using two simulation examples and a

real-data analysis.

Key words and phrases: Bivariate splines, penalty, semiparametric regression, spa-

tial data, triangulation.

1. Introduction

In many geospatial studies, spatially distributed covariate information is

available. For example, geographic information systems may contain measure-

ments obtained from satellite images at some locations. These spatially explicit

data can be useful in the construction and estimation of regression models. How-

ever, the domain over which the variables of interest are defined is often compli-

cated, such as stream networks, islands, and mountains. For example, Figure 1

(a) and (b) show the largest estuary in New Hampshire, together with the loca-
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Figure 1. Regional map of estuaries. Dots in (b) represent sample locations.

tion of 97 sites where the mercury in sediment concentrations was surveyed in

2000, 2001, and 2003; see Wang and Ranalli (2007). It is well known that many

conventional smoothing tools with respect to the Euclidean distance between ob-

servations suffer from the problem of “leakage” across complex domains. This

refers to poor estimations over difficult regions as a result of the inappropriate

linking of the parts of the domain separated by physical barriers; for more excel-

lent discussions, see Ramsay (2002) and Wood, Bravington and Hedley (2008).

Here, we propose using bivariate splines (smooth piecewise polynomial functions

over a triangulation of the domain of interest) to model spatially explicit data

sets, enabling us to overcome the “leakage” problem and provide a more accurate

estimation and prediction.

Here, we focus on the partially linear model (Speckman (1988); He and

Shi (1996); Mammen and van de Geer (1997); Liang, Härdle and Carroll (1999);

Härdle, Liang and Gao (2000); Ma, Chiou and Wang (2006); Liang and Li (2009)),

referred to as the PLM, for data randomly distributed over 2D domains. Specif-

ically, let Xi = (Xi1, Xi2)T be the location of the ith point, for i = 1, . . . , n,

that ranges over a bounded domain Ω ⊆ R2 of arbitrary shape, for example,

the domain of the estuaries in New Hampshire, shown in Figure 1. Let Yi be

the response variable and Zi = (Zi1, . . . , Zip)
T be the predictors at location Xi.

Suppose that {(Zi,Xi, Yi)}ni=1 satisfies the following model:
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Yi = ZT
i β + g (Xi) + εi, i = 1, . . . , n, (1.1)

where β = (β1, . . . , βp)
T are unknown parameters, g(·) is some unknown but

smooth bivariate function, and εi, i = 1, . . . , n, are independent and identically

distributed (i.i.d.) random noises with E(εi) = 0 and Var(εi) = σ2. Each εi is

independent of Xi and Zi. In many situations, our main interest is in estimating

and making inferences for the regression parameters β, which measures the effect

of the covariate Z after adjusting for the location effect of X.

If g(·) is a univariate function, model (1.1) becomes a typical PLM. In the

past three decades, flexible and parsimonious PLMs have been studied extensively

and used widely in many statistical applications, from biostatistics, econometrics,

engineering to social science; see Chen, Liang and Wang (2011), Huang, Zhang

and Zhou (2007), Liu, Wang and Liang (2011), Wang et al. (2011), Ma, Song and

Wang (2013), Wang et al. (2014), Zhang, Cheng and Liu (2011) as examples of

recent works on PLMs. When g(·) is a bivariate function, there are two popular

estimation tools: bivariate P-splines (Marx and Eilers (2005)), and thin plate

splines (Wood (2003)). Later, Xiao, Li and Ruppert (2013) proposed a sandwich

smoother, which has a tensor product structure that simplifies an asymptotic

analysis and can be computed efficiently. However, the application to spatial

data analysis over complex domains has been hampered, owing to the scarcity

of bivariate smoothing tools that are computationally efficient and theoretically

reliable when solving the problem of “leakage” across the domain. Traditional

smoothing methods in practical data analyses, such as kernel smoothing, wavelet-

based smoothing, tensor product splines, and thin plate splines, usually perform

poorly for such data, because they do not consider the shape of the domain and

they smooth across concave boundary regions.

There are several challenges when going from rectangular domains to irregu-

lar domains with complex boundaries or holes. Recently, studies have examined

smoothing over irregular domains, and significant progress has been made. To

deal with irregular domains, Wang and Ranalli (2007) proposed replacing the

Euclidean distance with the geodesic distance in the low-rank thin-plate spline

smoothing method. To calculate the geodesic distances, a graph is constructed

where each vertex is the location of an observation and is connected only to its

k nearest neighbors. Floyd’s algorithm is then used to find the shortest path

through the graph. This algorithm has a computing complexity of O(n3), with-

out considering the selection of the optimal k, which makes the approach costly

for large data sets. In addition, their method involves computing the square
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roots of matrices that are not guaranteed to be positive semi-definite. Ramsay

(2002) suggested a penalized least squares approach with a Laplacian penalty,

and transformed the problem to one of solving a system of partial differential

equations (PDEs). Recently, Sangalli, Ramsay and Ramsay (2013) extended the

method in Ramsay (2002) to PLMs, which allows for spatially distributed covari-

ate information to be included in the models. The data smoothing problem in

Sangalli, Ramsay and Ramsay (2013) is solved using the finite element method

(FEM), a method mainly developed and used to solve PDEs. Although their

method is useful in many practical applications, they did not investigate the the-

oretical properties of the estimation. In addition, our case study in Section 5 and

simulation study in the Supplementary Material reveal that the FEM is not suf-

ficiently flexible to estimate the functional part of the model well. Furthermore,

Wood, Bravington and Hedley (2008) pointed out that the FEM method requires

a very fine triangulation in order to reach a certain approximation power when

the underlying function is complicated.

In this study, we tackle the estimation problem using the bivariate splines

defined on triangulations (Awanou, Lai and Wenston (2005); Lai and Schumaker

(2007)). Our approach is superior to the finite element method (Sangalli, Ram-

say and Ramsay (2013)) in that we use spline functions with a more flexible

degree and smoothness, enabling us to better approximate the bivariate function

g(·). Another important feature of this approach is that it does not require the

construction of locally supported splines or finite elements with degree greater

than one.

To the best of our knowledge, the statistical aspects of smoothing for PLMs

using bivariate splines have not been discussed in the literature. This study

presents the first attempt at investigating the asymptotic properties of PLMs for

data distributed on complex regions. We study the asymptotic properties of the

least squares estimators of β and g(·) using bivariate splines defined on triangu-

lations with a penalty term. We show that our estimator of β is root-n consistent

and asymptotically normal, although the convergence rate of the estimator of the

nonparametric component g(·) is slower than root n. A standard error formula

for the estimated coefficients is provided and tested to be accurate for practical

scenarios. Hence, the proposed method enables us to construct confidence inter-

vals for the regression parameters. We also obtain the convergence rate for the

estimator of g(·).
The rest of the paper is organized as follows. In Section 2, we give a brief

review of the triangulations and propose our estimation method based on penal-
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ized bivariate splines. We also discuss how to choose the penalty parameters.

Section 3 presents our the asymptotic analysis of the proposed estimators. Sec-

tion 4 provides a detailed numerical study that compares several methods in two

different scenarios and explores the estimation and prediction accuracy. In Sec-

tion 5, we apply the proposed method to the mercury concentration study, where

the variables of interest are defined over the estuary in New Hampshire depicted

in Figure 1. Concluding remarks are provided in Section 6. All technical details

are provided in the Supplementary Material.

2. Triangulations and Penalized Spline Estimators

Our estimation method is based on penalized bivariate splines on triangula-

tions. The idea is to approximate the function g(·) using bivariate splines that

are piecewise polynomial functions over a 2D triangulated domain, enabling us

to fit g(·) more flexibly. We use this approximation to construct least squares

estimators of the linear and nonlinear components of the model with a penal-

ization term. In the remainder of this section, we describe the background of

triangulations and B-form bivariate splines, and introduce the penalized spline

estimators.

2.1. Triangulations

Triangulation is an effective strategy to handle data distributed over irreg-

ular regions with complex boundaries and/or interior holes, and has recently

attracted substantial attention in many applied areas, such as geospatial studies,

numerical solutions of PDEs, image enhancements, and computer aided geomet-

ric design. Many triangulation software packages are available. Section S1 of the

Supplementary Material explains how to choose a triangulation for a given data

set.

We use τ to denote a triangle that is a convex hull of three points that are

not located in one line. A collection 4 = {τ1, . . . , τN} of N triangles is called a

triangulation of Ω = ∪Ni=1τi, provided that if a pair of triangles in 4 intersect,

then their intersection is either a common vertex or a common edge. Although

any kind of polygon shapes can be used for the partition of Ω, we use triangu-

lations because any polygonal domain of arbitrary shape can be partitioned into

finitely many triangles to form a triangulation 4. Given a triangle τ ∈ 4, let |τ |
be its longest edge length, and denote the size of 4 by |4| = max{|τ |, τ ∈ 4}, ,

that is, the length of the longest edge of 4.
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2.2. B-form bivariate splines

In this section, we briefly introduce bivariate splines. A more in-depth de-

scription can be found in Lai and Schumaker (2007), Lai (2008), and Zhou and

Pan (2014); the details of the implementation are provided in Awanou, Lai and

Wenston (2005). Let τ = 〈v1,v2,v3〉 be a nondegenerate (i.e., with nonzero area)

triangle with vertices v1, v2, and v3. Then, for any point v ∈ R2, there is a unique

representation of the form v = b1v1 +b2v2 +b3v3, with b1 +b2 +b3 = 1, where b1,

b2, and b3 are the barycentric coordinates of the point v relative to the triangle

τ . The Bernstein polynomials of degree d relative to triangle τ are defined as

Bτ,d
ijk(v) = (d!/i!j!k!)bi1b

j
2b
k
3, for i+ j + k = d. Then, for any τ ∈ 4, we can write

the polynomial piece of spline s restricted on τ ∈ 4 as s|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk,

where γτ = {γτijk, i+ j + k = d} are called B-coefficients of s.

For a nonnegative integer r, let Cr(Ω) be the collection of all rth continuously

differentiable functions over Ω. Given a triangulation 4, let Srd(4) = {s ∈
Cr(Ω) : s|τ ∈ Pd(τ), τ ∈ 4} be a spline space of degree d and smoothness r over

triangulation 4, where Pd is the space of all polynomials of degree less than or

equal to d. Let S = Sr3r+2(4) for a fixed smoothness r ≥ 1. We know that

such a spline space has the optimal approximation order (rate of convergence)

for noise-free data sets; see Lai and Schumaker (1998) and Lai and Schumaker

(2007).

For notational simplicity, let {Bξ}ξ∈K be the set of degree-d bivariate Bern-

stein basis polynomials for S, where K denotes an index set of all Bernstein basis

polynomials. Then, we can represent any function s ∈ S using the following basis

expansion: s(x) =
∑
ξ∈K

Bξ(x)γξ = B(x)Tγ, (2.1)

where γT = (γξ, ξ ∈ K) is the spline coefficient vector. To meet the smoothness

requirement of the splines, we need to impose linear constraints on the spline

coefficients γ in (2.1). We require that γ satisfies Hγ = 0 with H being the ma-

trix for all smoothness conditions across the shared edges of the triangles, which

depends on the smoothness parameter r and the structure of the triangulation.

See Zhou and Pan (2014) for examples of H.

2.3. Penalized spline estimators

To define the penalized spline method, for any direction xj , j = 1, 2, let

Dq
xjf(x) denote the qth-order derivative in the direction xj at the point x =

(x1, x2). Let
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Eυ(f) =
∑
τ∈4

∫
τ

∑
i+j=υ

(
υ

i

)
(Di

x1
Dj
x2
f)2dx1dx2 (2.2)

be the energy functional for a fixed integer, υ ≥ 1 (Lai (2008)). Although all

partial derivatives up to the chosen order υ can be included in (2.2), for simplicity,

in the remaining part of the paper, we use υ = 2. A similar problem can be

studied for the more general case of υ ≥ 2. When υ = 2,

E2(f) =

∫
Ω

{
(D2

x1
f)2 + 2(Dx1

Dx2
f)2 + (D2

x2
f)2
}
dx1dx2, (2.3)

which is similar to the thin-plate spline penalty (Green and Silverman (1994)),

except that the latter is integrated over the entire plane R2. Sangalli, Ram-

say and Ramsay (2013) used a different roughness penalty to that in (2.3).

Specifically, they use the integral of the square of the Laplacian of f , that is,∫
Ω(D2

x1
f + D2

x2
f)2dx1dx2. Both forms of penalties are invariant with respect

to the Euclidean transformations of the spatial coordinates, thus, the bivariate

smoothing does not depend on the choice of the coordinate system.

Given λ > 0 and the data set {(Zi,Xi, Yi)}ni=1, we consider the following

minimization problem:

min
β

min
s∈S

n∑
i=1

{
Yi − ZT

i β − s (Xi)
}2

+ λEυ(s), (2.4)

where S is a spline space over the triangulation 4 of Ω.

Let Y = (Y1, . . . , Yn)T be a vector of n observations of the response variable,

Xn×2 = {(Xi1, Xi2)}ni=1 be a location design matrix, and Zn×p = {(Zi1, . . . ,
Zip)}ni=1 be a collection of all covariates. Denote by B the n×K evaluation matrix

of Bernstein basis polynomials, with the ith row given by BT
i = {Bξ(Xi), ξ ∈

K}. Then, according to (2.1), {s(Xi)}ni=1 can be written by Bγ. Thus, the

minimization in (2.4) reduces to

min
β,γ

L(β,γ)=min
β,γ

{
‖Y − Zβ −Bγ‖2+λγTPγ

}
subject to Hγ = 0, (2.5)

where P is the block diagonal penalty matrix satisfying γTPγ = Eυ(Bγ).

To solve the constrained minimization problem (2.5), we first remove the

constraint using a QR decomposition of the transpose of the constraint matrix

H. Specifically,

HT = QR = (Q1 Q2)

(
R1

0

)
= Q1R1, (2.6)

where Q is an orthogonal matrix, R1 is an upper triangle matrix, and the sub-

matrix Q1 is the first r columns of Q, where r is the rank of matrix H. The



354 WANG ET AL.

proof of the following lemma is provided in the Supplementary Material.

Lemma 1. Let Q1,Q2 be submatrices, as in (2.6). Let γ = Q2θ for a vector θ

of appropriate size. Then, Hγ = 0. On the other hand, if Hγ = 0, then there

exists a vector θ, such that γ = Q2θ.

The problem in (2.5), now becomes a conventional penalized regression prob-

lem without any constraints:

min
β,θ

{
‖Y − Zβ −BQ2θ‖2 + λ(Q2θ)TP(Q2θ)

}
.

For a fixed penalty parameter λ, we have(
β̂

θ̂

)
=

{(
ZTZ ZTBQ2

QT
2 BTZ QT

2 BTBQ2

)
+

(
0

λQT
2 PQ2

)}−1(
ZTY

QT
2 BTY

)
.

Letting

V =

(
V11 V12

V21 V22

)
=

(
ZTZ ZTBQ2

QT
2 BTZ QT

2 (BTB + λP)Q2

)
, (2.7)

we have (
β̂

θ̂

)
= V−1

(
ZTY

QT
2 BTY

)
.

Next, we write

V−1 ≡ U =

(
U11 U12

U21 U22

)
=

(
U11 −U11V12V

−1
22

−U22V21V
−1
11 U22

)
, (2.8)

where

U−1
11 = V11 −V12V

−1
22 V21 = ZT

[
I−BQ2{QT

2 (BTB + λP)Q2}−1QT
2 BT

]
Z,

U−1
22 = V22 −V21V

−1
11 V12 = QT

2

[
BT
{
I− Z(ZTZ)−1ZT

}
B + λP

]
Q2. (2.9)

Then, the minimizers of (2.7) can be given precisely, as follows:

β̂ = U11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)
Y

= U11Z
T
{
I−BQ2{QT

2 (BTB + λP)Q2}−1QT
2 BT

}
Y,

θ̂ = U22Q
T
2 BT

(
I− ZV−1

11 ZT
)
Y = U22Q

T
2 BT

{
I− Z(ZTZ)−1ZT

}
Y.

Therefore, we obtain the following estimators for γ and g(·), respectively:

γ̂ = Q2θ̂ = Q2U22Q
T
2 BT

{
I− Z(ZTZ)−1ZT

}
Y,

ĝ(x) = B(x)Tγ̂ =
∑
ξ∈K

Bξ(x)γ̂ξ. (2.10)

The fitted values at the n data points are Ŷ = Zβ̂ + Bγ̂ = S(λ)Y, where the
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hat matrix is

S(λ) = ZU11Z
T
(
I−BQ2V

−1
22 QT

2 BT
)

+ BQ2U22Q
T
2 BT

(
I− ZV−1

11 ZT
)
.

In a nonparametric regression, the trace of the smoothing matrix, tr(S(λ)),

is often referred to as the degrees of freedom of the model fit (Green and Silver-

man (1993)). The trace can be roughly interpreted as the equivalent number of

parameters, and can be thought as a generalization of the definition in a linear

regression. Finally, we estimate the variance of the error term, σ2 by

σ̂2 =
‖Y − Ŷ‖2

n− tr(S(λ))
. (2.11)

2.4. Penalty parameter selection

Selecting a suitable value for the smoothing parameter λ is critical to the

model fitting. A large value of λ enforces a smoother fitted function, with po-

tentially larger fitting errors. A small value yields a rougher fitted function and

potentially smaller fitting errors, with sufficiently many data locations. Because

the in-sample fitting errors cannot be used to gauge the prediction property of

the fitted function, one should target a criterion function that mimics the out-of-

sample performance of the fitted model. The generalized cross-validation (GCV)

is such a criterion, and is widely used for choosing the penalty parameter. We

choose the smoothing parameter λ by minimizing the following GCV criterion:

GCV(λ) =
n‖Y − S(λ)Y‖2

{n− tr(S(λ))}2
,

over a grid of values of λ. We use a 10-point grid, where the values of log10(λ)

are equally spaced between −6 and 7 in our numerical experiments.

3. Asymptotic Results

This section studies the asymptotic properties for the proposed estimators.

To discuss these properties, we first introduce some notation. For any function

f over the closure of domain Ω, denote ‖f‖∞ = supx∈Ω |f(x)| as the supremum

norm of function f , and |f |υ,∞ = maxi+j=υ ‖Di
x1
Dj
x2f(x)‖∞ as the maximum

norms of all υth-order derivatives of f over Ω. Let

W `,∞(Ω) = {f on Ω : |f |k,∞ <∞, 0 ≤ k ≤ `} (3.1)

be the standard Sobolev space. For any j = 1, . . . , p, let zj be the coordinate

mapping that maps z to its jth component such that zj(Zi) = Zij , and let

hj = argminh∈L2‖zj − h‖2L2 = argminh∈L2E{(Zij − h(Xi))
2} (3.2)
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be the orthogonal projection of zj onto L2.

Before we state the results, we make the following assumptions:

(A1) The random variables Zij are bounded, uniformly in i = 1, . . . , n, j =

1, . . . , p.

(A2) The eigenvalues of E {(1 ZT
i )T(1 ZT

i )|Xi} are bounded away from zero.

(A3) The noise ε satisfies that limη→∞E
[
ε2I(ε > η)

]
= 0.

Assumptions (A1)–(A3) are typical in the semi-parametric smoothing liter-

ature; for instance, see Huang, Zhang and Zhou (2007) and Wang et al. (2011).

The purpose of Assumption (A2) is to ensure that the vector (1,ZT
i ) is not mul-

ticolinear.

We next introduce some assumptions on the properties of the true bivariate

function in model (1.1) and the data locations related to the triangulation 4.

(C1) The bivariate functions hj(·), for j = 1, . . . , p, and the true function in

model (1.1) g(·) ∈W `+1,∞(Ω) in (3.1) for an integer ` ≥ 1.

(C2) For every s ∈ S and every τ ∈ 4, there exists a positive constant F1,

independent of s and τ , such that

F1‖s‖∞,τ ≤

 ∑
Xi∈τ, i=1,...,n

s (Xi)
2


1/2

, for all τ ∈ 4, (3.3)

where ‖s‖∞,τ denotes the supremum norm of s on triangle τ .

(C3) Let F2 be the largest number of observations in triangles τ ∈ 4. That is,

F2 > 0 is a constant ∑
Xi∈τ, i=1,...,n

s (Xi)
2


1/2

≤ F2‖s‖∞,τ , for all τ ∈ 4. (3.4)

We further assume that F1 and F2 in (3.3) and (3.4) satisfy F2/F1 = O(1).

(C4) The number of triangles N and the sample size n satisfy that N = Cnγ , for

some constant C > 0 and 1/(`+ 1) ≤ γ ≤ 1/3.

(C5) The penalized parameter λ satisfies λ = o(n1/2N−1).

(C6) Let δ4 = maxτ∈4 |τ |/ρτ , where ρτ is the radius of the largest circle inscribed

in τ . The triangulation 4 is δ-quasi-uniform; that is, there exists a positive

constant δ such that the triangulation 4 satisfies δ4 ≤ δ.
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Condition (C1) describes the requirement for the true bivariate function usu-

ally used in the literature on nonparametric or semiparametric estimations. Con-

dition (C2) ensures the existence of a discrete least squares spline (von Golitschek

and Schumaker (2002)), that is, an unpenalized spline with λ = 0. Although we

can obtain a decent penalized least squares spline fitting without this condition,

we need (C2) to study the convergence of the bivariate penalized least squares

splines. Heuristically, if a triangle τ ∈ 4 near the boundary of 4 does not

contain sufficient observations, the penalized least square spline will not fit the

function well over the triangle τ . Condition (C3) suggests that we should not

put too many observations in one triangle. Similar conditions to (C2) and (C3)

are used in von Golitschek and Schumaker (2002) and Huang (2003). Condition

(C4) requires that the number of triangles is above some minimum, depending

upon the degree of the spline, which is similar to the requirement of Li and Rup-

pert (2008) in the univariate case. It also ensures the asymptotic equivalence of

the theoretical and empirical inner products/norms defined at the beginning of

Section 3. Condition (C5) is required to reduce the bias of the spline approxi-

mation through “under smoothing” and “choosing smaller λ”. The study of Lai

and Schumaker (2007) shows that the approximation of a bivariate spline space

over 4 is dependent on δ4, that is, the larger the δ4 is, the worse the spline

approximation is. Condition (C6) suggests using triangulations that are more

uniform with a reasonably small δ4. By choosing a set of appropriate vertices,

we have a desired triangulation where δ4 is sufficiently small, say δ4 < 10.

To avoid confusion, we let β0 and g0 be the true parameter value and func-

tion, respectively, in model (1.1). The following theorem states that the rate

convergence of β̂ is root-n and β̂ is asymptotically normal.

Theorem 1. Suppose Assumptions (A1)–(A3) and (C1)–(C6) hold. Then the

estimator β̂ is asymptotically normal; that is, (nΣ)1/2(β̂−β0)→ N(0, I), where

I is a p× p identity matrix,

Σ = σ−2E{(Zi − Z̃i)(Zi − Z̃i)
T}, (3.5)

with Z̃i = {h1(Xi), . . . , hp(Xi)}T, for hj(·) defined in (3.2), j = 1, . . . , p. In

addition, Σ can be consistently estimated by

Σn =
1

nσ̂2

n∑
i=1

(Zi − Ẑi)(Zi − Ẑi)
T =

1

nσ̂2
(Z− Ẑ)T(Z− Ẑ), (3.6)

where Ẑi is the ith column of ẐT = ZTBQ2V
−1
22 QT

2 BT and σ̂2 is given by (2.11).

The results in Theorem 1 enable us to construct confidence intervals for the
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parameters. The next theorem provides the global convergence of the nonpara-

metric estimator ĝ(·).

Theorem 2. Suppose Assumptions (A1)–(A3) and (C1)–(C6) hold. Then the

bivariate penalized estimator ĝ(·) in (2.10) is consistent with the true function

g0, and satisfies that

‖ĝ − g0‖L2 = OP

(
λ

n |4|3
|g0|2,∞ +

(
1 +

λ

n |4|5

)
F2

F1
|4|`+1|g0|`,∞ +

1√
n|4|

)
.

The proofs of the above two theorems are given in the Supplemental Mate-

rial. Note that the rate of convergence given in Theorem 2 is the same as those

for nonparametric spline regression, without including the covariate information

obtained in Lai and Wang (2013).

4. Simulation

In this section, we carry out a numerical study to assess the performance

of the proposed estimators using bivariate penalized splines over triangulations

(BPST) over a horseshoe domain. We compare the BPST with filtered krig-

ing (KRIG), thin-plate splines (TPS), the linear finite-elements method (FEM)

of Sangalli, Ramsay and Ramsay (2013), and the geodesic low-rank thin-plate

splines (GLTPS) of Wang and Ranalli (2007). Additional simulation studies can

be found in the Supplementary Material.

For 50 × 20 grid points on the domain, we simulate data as follows. The

response variable Y is generated from the following PLM:

Y = β1Z1 + β2Z2 + g(X1, X2) + ε.

Figure 2 (a) shows the surface of the true function g(·), as used in Wood, Braving-

ton and Hedley (2008) and Sangalli, Ramsay and Ramsay (2013). The random

error, ε, is generated from an N(0, σ2
ε ) distribution with σε = 0.5. In addi-

tion, we set the parameters as β1 = −1 and β2 = 1. For the design of the

explanatory variables, Z1 and Z2, two scenarios are considered, based on the

relationship between the location variables (X1, X2) and the covariates (Z1, Z2).

Under both scenarios, Z1 ∼ uniform[−1, 1]. On the other hand, the variable

Z2 = cos[4π(ρ(X2
1 +X2

2 )+(1−ρ)U)], where U ∼ uniform[−1, 1] and is indepen-

dent of (X1, X2) and Z1. We consider both an independent design ρ = 0.0 and

a dependent design ρ = 0.7 in this example. Under both scenarios, 100 Monte

Carlo replicates are generated. Figure 2 (b) demonstrates the sampled location

points of replicate 1. For each replication, we randomly sample n = 200 locations
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(a) (b)

Figure 2. (a) True function of g(·); (b) Sampled location points of replicate 1.
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Figure 3. Three triangulations on the horseshoe domain.

uniformly from the grid points inside the horseshoe domain.

Figure 3 (a)–(c) illustrate three different triangulations used in the BPST

method. In the first triangulation (41), we use 89 triangles (73 vertices). There

are 158 triangles (114 vertices) and 286 triangles (186 vertices) in 42 and 43,

respectively. To implement the TPS and KRIG methods, we use the R pack-

age fields under the standard implementation setting of (Furrer, Nychka and

Sainand (2011)). For KRIG, we try different covariance structures, and choose

the Matérn covariance with smoothness parameter ν = 1, which gives the best

prediction. For the GLTPS, following Wang and Ranalli (2007), we use 40 knots

with locations selected using the “cover.design” method in the package fields.

For all methods requiring a smoothing or roughness parameter, the GCV is used

to choose the values of the parameter.

To assess the accuracy of the estimators, we compute the root mean squared

error (RMSE) for each of the components based on 100 Monte Carlo sam-

ples. Table 1 shows the RMSEs of the estimates of the parameters β1, β2, and

σε. The RMSE for the nonlinear function g(·) is computed as the average of
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Table 1. Root mean squared errors of the estimates.

ρ Method
RMSE CV-RMSPE

β1 β2 σε g(·) Y

0.0

KRIG 0.0582 0.0433 0.0455 0.3972 0.6728
TPS 0.0543 0.0426 0.0365 0.3013 0.6037
GLTPS 0.0625 0.0544 0.0233 0.1565 0.5326
FEM 0.0560 0.0480 0.0348 0.1558 0.5333
BPST (41) 0.0526 0.0498 0.0209 0.1473 0.5299
BPST (42) 0.0483 0.0489 0.0220 0.1483 0.5210
BPST (43) 0.0544 0.0544 0.0222 0.1458 0.5248

0.7

KRIG 0.0586 0.0440 0.0460 0.3973 0.6728
TPS 0.0547 0.0402 0.0363 0.3010 0.6038
GLTPS 0.0612 0.0411 0.0220 0.1553 0.5326
FEM 0.0562 0.0597 0.0352 0.1567 0.5336
BPST (41) 0.0521 0.0563 0.0209 0.1473 0.5294
BPST (42) 0.0481 0.0502 0.0222 0.1479 0.5209
BPST (43) 0.0543 0.0479 0.0220 0.1457 0.5251

[1,000−1
∑1,000

i=1 {ĝ(Xi) − g(Xi)}2]1/2, based on 1,000 = 50 × 20 grid points over

the 100 Monte Carlo replications. Table 1 shows that BPST produces the best

estimation of the nonlinear function g(·), followed by the GLTPS and FEM.

The RMSE is nearly constant for all three triangulations, which shows that 41

might be sufficiently fine to capture the feature in the data set. It also sug-

gests that, when this minimum number of triangles is reached, further refining

of the triangulation will have little effect on the fitting process, but will make

the computational burden unnecessarily heavy. Table 1 also provides the 10-

fold cross-validation root mean squared prediction error (CV-RMSPE) for the

response variable, defined as {n−1
∑10

m=1

∑
i∈κm

(Ŷi − Yi)
2}1/2 over 100 Monte

Carlo replications, where κ1, . . . , κ10 comprise a random partition of the data

set into 10 disjoint subsets of equal size. The CV-RMSPE also shows the su-

perior performance of the BPST method, because it provides the most accurate

predictions.

Figure 4 shows the estimated functions over a grid of 500× 200 points using

different methods for replicate 1 for ρ = 0.0. Because such a high-resolution

prediction is computationally too expensive for the GLTPS, the prediction map

for the GLTPS is based on 100× 40 grid points. The plots show that the BPST

and GLTPS estimates look visually better than the other four estimates do. In

addition, there is a “leakage effect” in the KRIG and TPS estimates. This poor

performance is because KRIG and TPS do not take the complex boundary into
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Figure 4. Contour maps for the true function and its estimators (ρ = 0.0).

Table 2. Standard error estimates of the coefficients via BPST (42).

ρ Parameter SEmc SEmean SEmedian SEmad

0.0
β1 0.0479 0.0651 0.0654 0.0031
β2 0.0446 0.0532 0.0530 0.0028

0.7
β1 0.0477 0.0651 0.0653 0.0029
β2 0.0420 0.0518 0.0522 0.0024

account and smooth across the gap inappropriately. Finally, the BPST estimators

based on the three triangulations are very similar, supporting our findings for

penalized splines that the number of triangles is not critical to the fitting, as

long as it is sufficiently large to capture the pattern and features of the data.

Similar estimation results are obtained for the case of ρ = 0.7. Sample estimated

functions are presented in Figure 1 in the Supplementary Material to save space.

Next, we test the accuracy of the standard error (SE) formula in (3.6) for β̂1

and β̂2; the results are listed in Table 2. The standard deviations of the estimated

parameters are computed based on 100 replications, which can be regarded as

the true standard errors (column labeled “SEmc”) and compared with the mean

and median of the 100 estimated standard errors calculated using (3.6) (columns

labeled “SEmean” and “SEmedian”, respectively). The column labeled “SEmad” is

the interquartile range of the 100 estimated standard errors, divided by 1.349,

which is a robust estimate of the standard deviation. Table 2 shows that the

averages or medians of the SEs calculated using the formula are very close to

the true standard deviations, which confirms the accuracy of the proposed SE

formula.
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In terms of the computational complexity, because the GLTPS technique

is largely based on Floyd’s algorithm, it has cubic time complexity (Miller and

Wood (2014)), as does ordinary kriging. In contrast, the TPS, FEM, and BPST

can be formulated as a single least squares problem, making them fast and easy

to compute. Taking the prediction as an example, we find that as the prediction

size increases (sample size is fixed), the computation time for GLTPS and KRIG

increases dramatically, whereas BPST provides an almost linear complexity of the

prediction size. On a standard PC with a Core i5 @2.9GHz CPU and 16.00GB

RAM, the BPST(41) prediction over 2,500×1,000 grid points needs only 10 sec-

onds of computing. Then, BPST(42) and BPST(43), with finer triangulations,

take just a few seconds longer than BPST(41). However, the GLTPS usually

takes hours to complete one estimation and prediction at the 100 × 40 resolu-

tion level. In addition, in our numerical study, KRIG requires a large amount

of memory. When the prediction resolution becomes finer than 2,500 × 1,000,

KRIG will crash on a standard PC owing to lack of memory.

5. Application to Mercury Concentration Studies

In this section, we apply the proposed method to map the mercury in the

sediment concentration over the estuary in New Hampshire; see Figure 1 (a) for

a regional map of the estuary. Mercury contamination is a significant public

health and environmental problem. When released into the environment, mer-

cury accumulates in water-laid sediments, is ingested by fish, and passed along

the food chain to humans. Several rivers flowing into the Great Bay are contam-

inated with mercury, according to the new Environment New Hampshire report.

Estuaries such as Great Bay are ideal locations for the accumulation of contami-

nants such as mercury that settle from the surrounding watershed (Brown et al.

(2015)). The coastal monitoring program, National Coastal Assessment, run by

the US Environmental Protection Agency (EPA) and the New Hampshire De-

partment of Environmental Services has developed surveys that can reveal useful

information on the status and trends of contaminants.

The spatial data set in our study consists of the mercury concentrations

surveyed in 2000/2001 and 2003 at 97 locations in the largest estuary in New

Hampshire; see Figure 1 (b) for the measurements of mercury concentrations at

different sampled locations. To assist decision-makers to develop effective envi-

ronmental protection strategies, it is critical to provide measurements of mercury

at spatial scales much finer than those at which the mercury was monitored.
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Figure 5. Domain triangulation for estuaries in New Hampshire.

This data set has been studied by Wang and Ranalli (2007) using the GLTPS.

Following Wang and Ranalli (2007), we consider a PLM with a linear term for

the year effect (Year = 0 if the survey was conducted in 2000/2001; and Year

= 1 if the survey was conducted in 2003):

Mercury Concentration = βYear + g(Latitude, Longitude). (5.1)

To fit model (5.1), we use five methods: KRIG, TPS, GLTPS, FEM, and BPST.

For KRIG, we choose the Matérn covariance structure to fit the model. The

GLTPS is calculated using the setting k = 5, as in Wang and Ranalli (2007).

For BPST and FEM, the smoothing or roughness parameter is selected using the

GCV. Figure 5 shows the triangulation adopted by the BPST. Table 3 summa-

rizes the coefficient estimation results based on the various methods.

The Great Bay estuary is a tidally dominated system and is the drainage

confluence of the Lamprey River and Squamscott River. Four additional rivers

that flow into the system are the Cocheco, Salmon Falls, Bellamy, and Oyster

Rivers. Mercury deposited in the estuaries in New Hampshire is both emitted
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Table 3. Estimated coefficients with standard errors (SE).

KRIG TPS GLTPS FEM BPST
Year 0.096 0.095 0.051 0.076 0.044
SE 0.03 0.03 0.02 0.04 0.04

from in-state sources and carried here from sources upwind. Emissions upwind

of New Hampshire are primarily attributable to coal-fired utilities and municipal

and medical waste incinerators in the Northeast and Midwest (Abbott et al.

(2008)). In general, the spatial distribution in Figure 1 (b) shows higher values

in the Salmon Falls River and Cocheco River, lower values in the Piscataqua

River and the Portsmouth area, and some localized low spots in the Great Bay

estuary.

Prediction maps at the 20 × 20 m resolution level using different methods

are shown in Figure 6. The computation-intensive GLTPS procedure finds it

difficult to make such a high-resolution prediction, so we decrease its resolution

to 150×150 m. All methods in Figure 6 identify relatively high mercury contam-

ination in the Salmon Falls River and Cocheco River, which is consistent with

known historical pollution sources (Abbott et al. (2008)). Figure 6 also illustrates

the overspill from the Northern part to the middle area when ordinary spatial

smoothing (e.g., KRIG or TPS) is used, because it smoothes across the Salmon

Falls River and Cocheco River, with high concentration levels in the northern

part. This problem is mitigated for GLTPS and FEM. The BPST smoother does

not show signs of leakage in the Piscataqua River and the Portsmouth area of

the estuaries, as other methods do. Note the way in which the KRIG and TPS

smooth, inappropriately, across the east coast of the Great Bay, so that rela-

tively high mercury concentrations are estimated for the Portsmouth area in the

southeastern part of the estuaries. The poor prediction performance of KRIG

and TPS suggests that we should not assume that densities in geographically

neighboring areas are similar if they are separated by physical barriers.

To evaluate the different methods, we report both the in-sample root mean

squared errors (RMSE): {n−1
∑n

i=1(Yi − Ŷi)2}1/2, and the cross-validation root

mean squared prediction errors (RMSPE) of the mercury concentrations. Be-

cause there are only 97 observations in this data set, we consider the leave-one-out

cross-validation (LOOCV) prediction error instead of the 10-fold cross-validation,

as conducted in the simulation studies. Specifically, for each i = 1, . . . , 97, we

train the model on every point except i, and then obtain the prediction error on

the held-out point. Table 4 summarizes the RMSE and the LOOCV-RMSPE us-
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Figure 6. Prediction maps of mercury concentrations over the estuaries in New Hamp-
shire.
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Table 4. In-sample RMSEs and LOOCV-RMSPE of mercury concentrations.

Method KRIG TPS GLTPS FEM BPST
RMSE 0.1397 0.1381 0.1366 0.1263 0.1197

RMSPE 0.1480 0.1473 0.1459 0.1467 0.1402

ing different methods. As expected, when the shape of the boundary is complex,

smoothers that respect the complicated boundary shape appropriately are able

to reduce the prediction errors. The LOOCV-RMSPE favors the model with the

BPST smoother, which not only gives the best model fit, but also provides the

most accurate prediction of the concentration values.

6. Conclusion

In this study, we considered PLMs for modeling spatial data with compli-

cated domain boundaries. We introduce a framework of bivariate penalized

splines defined on triangulations in a semi-parametric estimation. Our BPST

method demonstrates competitive performance compared with existing methods,

while providing a number of possible advantages.

First, the proposed method greatly enhances the application of non/semi-

parametric methods to spatial data analyses. It solves the problem of “leakage”

across complex domains, which many conventional smoothing tools suffer from.

The numerical results from the simulation studies and the application show that

our method is effective to account for complex domain boundaries. Our method

does not require the data to be evenly distributed or on regular-spaced grids,

as in the tensor product-smoothing methods. When we have regions of sparse

data, bivariate penalized splines provide a more convenient tool for fitting the

data than unpenalized splines do, because the roughness penalty helps regularize

the estimation. Relative to the conventional FEM, our method provides a more

flexible way to use piecewise polynomials of various degrees and smoothness over

an arbitrary triangulation for spatial data analyses.

Second, we provide new statistical theories for estimating the PLM for data

distributed on complex spatial domains. We show that our estimates of both the

parametric and the nonparametric parts of the model enjoy excellent asymptotic

properties. In particular, we showed that our estimates of the coefficients in the

parametric part are asymptotically normal, and then derived the convergence rate

of the nonparametric component under regularity conditions. We also provided a

standard error formula for the estimated parameters, and our simulation studies
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show that the standard errors are estimated with good accuracy. The theoretical

results provide measures of the effects of covariates after adjusting for the location

effect. In addition, they give valuable insights into the accuracy of our estimate

of the PLM and permit a joint inference for the parameters.

Finally, the computation of our proposed method is much more efficient than

other approaches, such as kriging and GLTPS. Specifically, for model fitting with

n locations, the computational complexity of the ordinary kriging and GLTPS

is O(n3), whereas the computational complexity of our method is only O(nN2).

Here N is the number of triangles in the triangulation, and is usually much

smaller than n, as suggested in Condition (C4).

Supplementary Material

The online Supplementary Material Wang et al. (2020) explains how to im-

plement the proposed methods, as well as providing additional simulation and

application results and the proofs of Lemma 1 and Theorems 1 and 2.
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