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Abstract. This paper is concerned with the numerical approximation of the minimizer of the continuous Rudin-

Osher-Fatemi (ROF) model for image denoising. A new discrete total variation is proposed and the associated
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1. Introduction. Since the seminal work of Rudin, Osher, and Fatemi[19] total varia-

tion based models for image restoration have received a great deal of attention. They are now

used in image denoising, image deblurring, and image inpainting. For image denoising, the

problem reads as follows:

argmin
u∈BV(Ω)

{J(u) := |Du|(Ω)} . subject to the constraints (1.1)

∫

Ω
u(x)dx =

∫

Ω
f (x)dx and

∫

Ω
|u(x)− f (x)|2dx≤ σ2|Ω|, (1.2)

where BV (Ω) is the Banach space of functions of bounded variation, and the constraints

indicate that the noise in f has mean zero and variance less than or equal to σ2. It was shown

in [11] that problem (1.1)–(1.2) is equivalent to the following unconstrained minimization

argmin
u∈BV(Ω)

{

E
f

λ
(u) := J(u)+

1

2λ

∫

Ω
(u− f )2

dx

}

(1.3)

where λ > 0 is a Lagrange multiplier. The existence and uniqueness of the minimizer of the

unconstrained problem was established in [1] and [11].

To find “good” numerical approximations of the solution of (1.3), one has to devise an

equally “good” discrete scheme for the total variation term |Du|(Ω). All the finite-difference

methods proposed in the literature are based on the observation that (see for example [2, 14]

for details)

|Du|(Ω) =
∫

Ω
|∇u|dx, ∀u ∈W1,1 (Ω) . (1.4)

As such, the total variation is then approximated using a combination of a quadrature formula

for the integral, and a first order finite-difference approximation of the derivative.

The discrete analogue of the minimization problem (1.3) has received a lot of attention,

and it has been shown that the best algorithm based on finite-difference schemes for denoising

a digital image using the above model has convergence rate O(1/k2), where k is the number

of iterations. However, the numerical approximation of the solution of (1.3) has not seen

much effort. The first works in that direction were published in [16] and [20].

†Current Address: Department of Mathematics, The University of Georgia, Athens, GA 30602.
‡Email Address: mjlai@math.uga.edu – Tel: 706-542-2065 – Fax: 706-542-2573
§Email Address: lmatamba@math.uga.edu – Tel: 706-542-5807 – Fax: 706-542-5907

1



2 MING-JUN LAI AND LEOPOLD MATAMBA MESSI

In this paper, we were interested in constructing a convergent piecewise linear approxi-

mation of the solution of (1.3). To this end, we needed to introduce a novel finite-difference

discretization of the total variation. We remind the reader that such discretizations in general

do no make sense as functions of bounded variation are defined up to a set of measure zero,

and in general do not have a continuous representative. Consequently, a finite-difference dis-

cretization of the functional E
f

λ (u) requires a suitable discretization of the function u and the

data function f .

Our contributions are the following: We propose a new discrete ROF model and for-

mulate two algorithms for computing its solution. A piecewise linear approximation of the

solution of the continuous model is then obtained by interpolating the solution of the discrete

model. One advantage of our new discretized ROF model is that the continuous piecewise

linear interpolation of the discrete solution converges to the solution of the continuous ROF

model (1.3). Thus, the numerical solution of the new model is a reliable approximation of

the solution of ROF model in the continuous setting. Not many discretized ROF models with

this convergence property are available in the literature. To the authors’ knowledge, only the

schemes in [20], [16], and [10] are proven to have such a convergence property.

It is widely accepted in the literature that with a suitable discretization of L1 functions,

one can construct a discrete approximation of E
f

λ
that Γ-converges to E

f

λ
(u) in BV (Ω) for an

appropriate topology. The minimizers of such approximating functionals will then converge

to the solution of the ROF model. However, no such construction has been proposed to our

knowledge, nor has the Γ−convergence of the available schemes been established. This work

is the first that constructs an approximation of the minimizer of (1.3) by continuous functions,

and proves the convergence of the approximations.

The remainder of the paper is structured as follows: In section 2 we established the

notations, recall relevant facts about functions of bounded variations, and present the new

discrete total variation that we shall use to guarantee convergence of our approximations.

Section 3 contains the main result of the paper and its proof. Finally, in section 4 we present

numerical evidence of the convergence of our approximation in the special case where f is

the characteristic function of a circle inside Ω. In this case the closed form of the minimizer

is known, thus allowing us to demonstrate the convergence of our method numerically.

2. Preliminaries and notations. In this section we give preliminary results and intro-

duce the notations that we shall use in the paper. Throughout the paper Ω shall denote the

open set (0,1)×(0,1) unless otherwise noted, and Ωm the open set (−m,m)×(−m,m), where

m is a natural number.

2.1. Basic notations. The characteristic function of Ω is defined by

1Ω(x) =

{

1, x ∈Ω,

0, x /∈Ω.

For a given η ∈R
2, we shall denote by τη Ω the image of the set Ω under the translation with

the vector η , i.e

τη Ω := {x+η : x ∈Ω} .

For a function u : Ω→ R, we denote by τη u the function whose domain is τ−η Ω and is

defined by

τη u(x) = u(x+η), x ∈ τ−ηΩ.
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It is well known that the translation operator τη is a bounded linear operator from Lp(Ω) into

Lp(τ−η Ω).
Let h > 0 be given. The p−modulus of continuity of order h, of a function u ∈ Lp(Ω), is

defined by

ω(u,h)p = sup
|η|≤h

‖τηu− u‖Lp(Ω∩τ−η Ω), (2.1)

where |η | stands for the Euclidean norm of η .

Let u ∈ L
p
loc(R

2) and A⊂⊂R
2 a relatively compact open subset of R2. The p−modulus

of continuity of u of order h with respect to A denoted ωp(u,h)A, is defined by

ω(u,h)p,A = ω(u1A,h)p. (2.2)

Let 0 < α ≤ 1, we denote Lip(α,Lp(Ω)) the subspace of Lp(Ω) defined by

Lip(α,Lp(Ω)) :=

{

u ∈ Lp(Ω) : sup
0<h<1

h−α ω(u,h)p < ∞

}

.

2.2. Functions of bounded variation. In this section, we recall without proofs the rel-

evant facts about functions of bounded variation that shall be used in this paper. We follow

the reference [14]; the interested reader is encouraged to refer to the above book and [2] for a

thorough treatment of the concept of functions of bounded variation.

Let Ω be a bounded Lipschitz region in R
2. A function u : Ω → R is said to be of

bounded variation if u ∈ L1(Ω) and

|Du|(Ω) := sup

{

∫

Ω
udiv(ϕ)dx : ϕ ∈D(Ω,R2), |ϕ(x)| ≤ 1, ∀x ∈Ω

}

is finite. The quantity |Du|(Ω) is called the total variation of u on Ω. The set of functions of

bounded variation on Ω, denoted BV (Ω), is a Banach space for the norm

‖u‖BV := ‖u‖L1 + |Du|(Ω).

We now explain how one extends the total variation of a function u ∈ BV (Ω) into a finite

positive Borel measure over Ω. Let u ∈ BV (Ω) be fixed. The total variation of u with respect

to an open subset A⊂Ω is naturally given by

|Du|(A) = sup

{

∫

Ω
udiv(ϕ)dx : ϕ ∈D(A,Rn), |ϕ(x)| ≤ 1, ∀x ∈ A

}

. (2.3)

Furthermore, if B is a general Borel subset of Ω, then we define the total variation of u over

B by

|Du|(B) := inf{|Du|(O) : O⊃ B and O open}. (2.4)

It can be shown that under the definition (2.4), |Du| is a positive Borel measure on Ω which

will be called the total variation measure of u. Consequently, by additivity of measures, the

following identity holds for all Borel subset K ⊆Ω

|Du|(Ω) = |Du|(ΩrK)+ |Du|(K). (2.5)

We recall relevant properties of functions of bounded variation. We start with a result

asserting that a function of bounded variation has a trace on the boundary.
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THEOREM 2.1 (Trace on the boundary, [14, Theorem 2.10]). Let Ω be a bounded Lips-

chitz region in R
2, and u ∈ BV(Ω). Then there exists a function γ0(u) ∈ L1(∂Ω) such that for

H 1-almost all x ∈ ∂Ω,

lim
r→0

1

r2

∫

{z∈Ω : |z−x|<r}
|u(z)− γ0(u)(x)|dz = 0. (2.6)

Furthermore, for every g ∈C1(Ω̄,R2)
∫

Ω
udiv(g)dx =−

∫

Ω
〈g,Du〉+

∫

∂Ω
γ0(u)〈g,ν〉dH

1, (2.7)

where ν is the unit outer normal to ∂Ω, and H 1 is the 1−dimensional Hausdorff measure

on R
2.

The trace γ0(u) of a function u ∈ BV (Ω) is uniquely defined by the equation (2.6) and

for H 1-almost every x ∈ ∂Ω

γ0(u)(x) = lim
r→0

1

|C(x,r)|

∫

C(x,r)
u(z)dz, (2.8)

where C(x,r) = {z ∈Ω : |z− x|< r} and |C(x,r)| is the Lebesgue measure of C(x,r).
The next result allows to define extensions beyond Ω of functions of bounded variation

on Ω. We will use it later in our work to define an extension via successive reflections of a

function of bounded variation without creating new oscillations at the boundary of Ω.

LEMMA 2.2 (Pasting Lemma [14, Proposition 2.8]). Let O be an open set such that

Ω ⊂⊂ O. Let u1 ∈ BV (Ω), and u2 ∈ BV (Or Ω̄) be given. Then the function u : O→ R

defined by

u(x) =

{

u1(x), x ∈Ω

u2(x), x /∈ Ω̄

is an element of BV (O) and

|Du|(O) = |Du1|(Ω)+ |Du2|(Or Ω̄)+

∫

∂Ω
|γ0(u1)− γ0(u2)|dH

1. (2.9)

Moreover, the total variation of u over the boundary of Ω is given by

|Du|(∂Ω) =

∫

∂Ω
|γ0(u1)− γ0(u2)|dH

1. (2.10)

Finally, we recall an alternate formula for the total variation of u over Ω that shall be

instrumental in establishing a maximum principle like property for the minimizer of the ROF

functional.

THEOREM 2.3 (Coarea formula [14, Theorem 1.23]). Let a function u∈ BV (Ω) be given

and define for every t ∈ R the sub-level set of u at level t by

Ut := {x ∈Ω : u(x)< t}. (2.11)

Then, the following identity holds

|Du|(Ω) =

∫ ∞

−∞
|D1Ut |(Ω)dt. (2.12)
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2.3. A discrete approximation of the ROF functional. We propose a discrete approx-

imation of the continuous ROF functional E
f

λ (u) defined in (1.3). The closure Ω̄ of Ω is

subdivided into N2 square sub-domains of side length h yielding a uniform quadrangulation

�h. A triangulation ∆h of Ω is constructed from �h by dividing each rectangle into two

triangles using the Northwest-Southeast diagonal as shown in Figure 2.1.

Fig. 2.1: A type I triangulation of Ω: T u
i, j is the triangle with vertexes 〈ωi+1, j, ωi+1, j+1, ωi, j+1〉

and T d
i, j is the triangle with vertexes 〈ωi, j, ωi+1, j, ωi, j+1〉. Ωi, j is used to discretize functions

in L1(Ω).

Let ω1,1 be lower left corner of Ω̄. We denote the set of vertexes of the triangulation ∆h

by

Vh = Ω̄∩
{

ω1,1 + hZ2
}

:= {ωi, j : 1≤ i, j ≤ N},

so that the (i, j)-th sub-square Ωi, j is given by

Ωi, j := Ω∩
(

ωi, j +[−h/2,h/2]2
)

.

We are interested in devising a numerical scheme for computing an approximation of

the minimizer of E
f

λ (u). However, since Du is a measure, discrete approximation of E
f

λ (u)
solely based on u are a delicate matter. In the discrete setting, the situation is much simpler.

The popular discrete counterpart of E
f

λ
(u)) is inspired by the closed form of |Du|(Ω) given

in (1.4). Assuming that a satisfactory discrete approximation of u has been designed, we

introduce the discrete gradient operators ∇+ = (∇x
+,∇

y
+) and ∇− = (∇x

−,∇
y
−), defined by

(∇x
+u)i, j =







0, if i = N or j = N
ui+1, j− ui, j

h
otherwise;

(∇y
+u)i, j =







0, if i = N or j = N
ui, j+1− ui, j

h
otherwise;

(2.13)
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and

(∇x
−u)i, j =







0, if i = 1 or j = 1
ui, j− ui−1, j

h
otherwise;

(∇y
−u)i, j =







0, if i = 1 or j = 1
ui, j− ui, j−1

h
otherwise.

(2.14)

We propose to compute the discrete total variation as follows

Jh(u) :=
h2

2
∑

1≤i, j≤N

|(∇+u)i, j|+
h2

2
∑

1≤i, j≤N

|∇−(u)i, j)|, (2.15)

where | · | is the Euclidean norm in R
2. The advantage of this discrete total variation will

be explained later after introducing more notation. The resulting approximation of the ROF-

functional E
f

λ (u) is given by

E
f
h (u) := Jh(u)+

h2

2λ ∑
1≤i, j≤N

∣

∣ui, j− fi, j

∣

∣

2
u ∈ L2(Ω), (2.16)

where fi, j is a suitable discrete approximation of the data function f .

We now describe a method for discretizing functions in L1
loc(Ω). We also explain how

one may construct an element of the space L
p
loc(Ω) from a discrete function on the lattice

{ωi, j : 1≤ i, j ≤ N}.
2.4. Embedding and Projection Operators. In the previous section, we gave a formal

discrete approximation of the ROF functional. We now clarify how this discretization is

obtained.

On one hand, a function u ∈ L1
loc(Ω) is discretized using the sampling operator, Qh :

L1
loc(Ω)→R

N×N , defined by

(Qh f )i, j :=
1

|Ωi, j|

∫

Ωi, j

f (x)dx. (2.17)

Qh shall also denote the projection of L1
loc(Ω) onto the space of piecewise constant functions

with respect to the partition {Ωi, j : 1≤ i, j ≤ N} of Ω, in which case Qh is defined by

Qh f (x) =
1

|Ωi, j|

∫

Ωi, j

f (y)dy for all x ∈
◦
Ωi, j, (2.18)

where
◦
Ωi, j stands for the interior of Ωi, j.

On the other hand, a digital image u ∈ R
N×N may be extended into a function Chu ∈

L1
loc(Ω) in a natural way as a piecewise constant function with respect to the quadrangulation

{Ωi, j : 1≤ i, j ≤ N} as follows:

Chu(y) = ui, j, if y ∈
◦
Ωi, j. (2.19)

We shall also need a continuous interpolation of a digital image u ∈ R
N×N which we define

as the continuous piecewise linear function on Ω defined by

Phu(y) = ∑
1≤i, j≤N

ui, jφi, j(y), (2.20)
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with φi, j : Ω→R the continuous piecewise linear function such that

φi, j(ωi, j) = 1, and φi, j(ω) = 0, ω ∈ Vh r {ωi, j}. (2.21)

LEMMA 2.4. Suppose that Ω is endowed with the triangulation ∆h. Then for all u ∈
R

N×N , there holds

‖Phu‖2
L2 ≤ ‖Chu‖2

L2 +
h2

12
(u2

1,N + u2
N,1). (2.22)

Proof. Let u∈RN×N be fixed. We first observe that Phu is the continuous bivariate spline

of degree 1 over the triangulation ∆h whose coefficients in the Bernstein-Bézier representation

are {ui, j, 1 ≤ i, j ≤ N}. Therefore, using the closed form formula for the inner product of

splines in Bernstein-Bézier form [17, Theorem 2.34], we get

∫

T u
i, j

Phu(y)2dy =
h2

24

(

u2
i+1, j + u2

i+1, j+1+ u2
i, j+1+(ui+1, j + ui+1, j+1+ ui, j+1)

2
)

,

and

∫

T d
i, j

Phu(y)2dy =
h2

24

(

u2
i, j+1 + u2

i, j + u2
i+1, j +(ui, j+1+ ui, j + ui+1, j)

2
)

.

Consequently, by the multinomial theorem and the elementary inequality 2ab≤ a2 + b2, we

have
∫

T u
i, j

Phu(y)2dy≤ h2

6

(

u2
i+1, j + u2

i+1, j+1+ u2
i, j+1

)

(2.23)

and

∫

T d
i, j

Phu(y)2dy≤ h2

6

(

u2
i, j+1 + u2

i, j + u2
i+1, j

)

. (2.24)

Furthermore, a direct computation gives

‖Chu‖2
L2 = h2

N−1

∑
i, j=2

u2
i, j +

h2

2

N−1

∑
i=2

j∈{1,N}

(u2
j,i + u2

i, j)+
h2

4
∑

i, j∈{1,N}
u2

i, j. (2.25)

Therefore, we have

‖Phu‖2
L2 = ∑

1≤i, j≤N−1

∫

T u
i, j

Phu(y)2dy+

∫

T d
i, j

Phu(y)2dy

≤ h2

3
∑

1≤i, j<N

(

u2
i, j+1 + u2

i+1, j

)

+
h2

6
∑

1≤i, j<N

(

u2
i, j + u2

i+1, j+1

)

= h2
N−1

∑
i, j=2

u2
i, j +

h2

2

N−1

∑
i=2

(u2
1,i + u2

i,1 + u2
N,i + u2

i,N)+

+
h2

6
(u2

1,1 + u2
N,N + 2u2

1,N + 2u2
N,1)

≤ ‖Chu‖2
L2 +

h2

12
(u2

1,N + u2
N,1).
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2.5. An extension of functions of bounded variation. In this section, we construct an

extension of a function u ∈ BV (Ω) into a function X [u] ∈ BV (R2) such that

|DX [u]|(∂Ω) = 0.

Let u ∈ BV (Ω) be given. The extension X [u] of u to all of R2 is the function that equals

zero outside the open set Ω0 = {x ∈ R
2 : −1 < x1,x2 < 3}, and is defined on Ω0 using four

successive reflections of the function u in steps 1 through 4 starting across one side of Ω as

shown in Figure 2.2.

Fig. 2.2: Extension of a function u ∈ L1(Ω) by successive reflections starting across the

boundary of Ω in four steps.

Let ρ be the radially symmetric function defined by

ρ(x) =







cexp

(

1

|x|2− 1

)

, |x|< 1

0, otherwise,
(2.26)

where the constant c is chosen such that

∫

R2
ρ(x)dx = 1. Let ρε(x) = ε−2ρ

( x

ε

)

be the

corresponding family of mollifiers.

THEOREM 2.5. Let u ∈ BV (Ω) be given. Then we have

(a)
∣

∣DX [u]
∣

∣(∂Ω) = 0

(b) lim
ε→0
|D(X [u]∗ρε)|(Ω) = |Du|(Ω)

Proof. Let u ∈ BV (Ω) be given, and u0 the restriction of X [u] to O = R
2
r Ω̄. Clearly

∂O = ∂Ω and it is easy to check that the trace of γ0(u0) = γ0(u). Since X [u] is obtained by

pasting u and u0, it follows from the pasting Lemma 2.2 that
∣

∣DX [u]
∣

∣(∂Ω) = 0, and (a) is

proved.

Next we show that (b) holds. Let 0 < ε < dist(Ω̄,∂Ω0) be fixed. It is easy to show from

the definition of the total variation that
∣

∣D(X [u]∗ρε)
∣

∣(Ω)≤
∣

∣DX [u]
∣

∣(Ωε) where Ωε := {x ∈ R
2 : dist(x,Ω)< ε}.

Since Ωε → Ω̄, we infer from the latter inequality that

limsup
ε→0

∣

∣D(X [u]∗ρε)
∣

∣(Ω)≤
∣

∣DX [u]
∣

∣(Ω̄) = |Du|(Ω) by part (a).

Furthermore, we have X [u]
L1(Ω)−−−→ u; thus, by lower semi-continuity of the total variation, we

get

liminf
ε→0

∣

∣D(X [u]∗ρε)
∣

∣(Ω)≥ |Du|(Ω).
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Combining the last two inequalities above, we obtain lim
ε→0
|D(X [u]∗ρε)|(Ω) = |Du|(Ω).

REMARK 2.6. It is known that property (b) of Theorem 2.5 above may not hold for

the zero extension of u. A straightforward consequence of (b) above is the convergence of

E
f

λ (X [u]∗ρε) to E
f

λ (u) as ε goes to zero.

PROPOSITION 2.7. Let f ∈ L2(Ω) be fixed. Then for any 0 < h≪ 1, we have

ω(X [ f ],h)2,Ω1,2
≤ 4
√

2ω( f ,h)2, (2.27)

where Ω1,2 = (−1,2)× (−1,2).
Proof. Let f ∈ L2(Ω) be given, and η ∈ R

2 be fixed with |η | ≤ h.

‖τη(X [ f ])−X[ f ]‖2
L2(Ω1,2∩τ−η Ω1,2)

=

∫

Ω1,2∩τ−η Ω1,2

|X [ f ](x+η)−X[ f ](x)|2dx

≤ ∑
−1≤m,n≤2
−1≤i, j≤2

∑
|m−i|=1
|n− j|=1

∫

τm,nΩ∩τ(i, j)−η Ω
|X [ f ](x+η)−X[ f ](x)|2dx

≤ 2 ∑
−1≤i, j≤2

∫

τi, j(Ω∩τ−η Ω)
|X [ f ](x+η)−X[ f ](x)|2dx

≤ 32

∫

Ω∩τ−η Ω
| f (x+η)− f (x)|2dx = 32‖τη f − f‖2

2.

Thus, we have ω(X [ f ],h)2,Ω1,2
≤ 4
√

2ω( f ,h)2.

LEMMA 2.8. For any f ∈ L2(Ω) and 0 < h≪ 1, there holds

‖ f −ChQh f‖2 ≤ K1 ω( f ,h)2 (2.28)

and

‖PhQh f −ChQh f‖2 ≤ K2ω( f ,h)2, (2.29)

where K1 and K2 are positive constants independent of h.

Proof. By definition of the operators Qh (see (2.17)) and Ch (see (2.19)), we have

‖ f −ChQh f‖2
2 = ∑

1≤i, j≤N

∫

Ωi, j

∣

∣

∣

∣

∣

f (x)− 1
∣

∣Ωi, j

∣

∣

∫

Ωi, j

f (y)dy

∣

∣

∣

∣

∣

2

dx

≤ ∑
1≤i, j≤N

∫

Ωi, j

(

1
∣

∣Ωi, j

∣

∣

∫

Ωi, j

| f (x)− f (y)|dy

)2

dx

≤ ∑
1≤i, j≤N

∫

Ωi, j

(

4

h2

∫

{z : |z|≤
√

2h}
|X [ f ](x)−X [ f ](x+ z)|dz

)2

dx

=
∫

Ω

(

4

h2

∫

{z : |z|≤
√

2h}
|X [ f ](x)−X [ f ](x+ z)|dz

)2

dx

≤ 4

h2

∫

{z : |z|≤
√

2h}

∫

Ω
|X [ f ](x)−X [ f ](x+ z)|2 dxdz,

where we have used Cauchy-Schwarz inequality, and Fubini Theorem to swap the order of

integration.
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Now, we observe that for h≪ 1, for any x ∈ Ω and any z ∈ R
2 such that |z| ≤

√
2h, we

have {x, x+ z} ⊂Ω1,2; so that

∫

Ω
|X [ f ](x)−X [ f ](x+ z)|2 dx≤ (ω(X [ f ],

√
2h)2,Ω1,2

)2.

Therefore,

‖ f −ChQh f‖2
2 ≤

4

h2

∫

{z : |z|≤
√

2h}

∫

Ω
|X [ f ](x)−X [ f ](x+ z)|2 dxdz

≤ (ω(X [ f ],h)2,Ω1,2
)2 4

h2

∫

{z : |z|≤
√

2h}
dz

≤ 8π (ω(X [ f ],
√

2h)2,Ω1,2
)2

≤ 32π (ω(X [ f ],h)2,Ω1,2
)2 since ω(X [ f ],

√
2h)2,Ω1,2

≤ 2ω(X [ f ],h)2,Ω1,2

≤ π (32ω( f ,h)2)
2 by (2.27);

hence the inequality (2.28) holds with K1 = 32
√

π .

We now prove the inequality (2.29). By definition of the operators Ph, Qh, and Ch, we

have

‖PhQh f−ChQh f‖2
2 = ∑

1≤i, j≤N

∫

Ωi, j

|PhQh f (x)− (Qh f )i, j |2dx

≤ 2 ∑
1≤i, j≤N

∫

Ωi, j
∑

−1≤k,l≤1

∣

∣

(

(Qh f )i+l, j+k− (Qh f )i, j

)

φi+l, j+k(x)
∣

∣

2
dx

≤ 2 ∑
−1≤l,k≤1

∑
1≤i+l≤N
1≤ j+k≤N

h2
∣

∣(Qh f )i+l, j+k− (Qh f )i, j

∣

∣

2

≤ 2 ∑
−1≤l,k≤1

∑
1≤i+l≤N
1≤ j+k≤N

∫

Ωi, j

| f (x+(lh,kh))− f (x)|2dx

≤ 18(ω( f ,
√

2h)2,Ω1,2
)2.

Thus,

‖PhQh f −ChQh f‖2 ≤ 3
√

2ω( f ,
√

2h)2,Ω1,2

≤ 6
√

2ω( f ,h)2,Ω1,2
since ω( f ,

√
2h)2,Ω1,2

≤ 2ω( f ,h)2,Ω1,2

≤ 48ω( f ,h)2 by (2.27).

Hence (2.29) holds with K2 = 48, and the proof is complete.

3. Piecewise linear approximation of the continuous ROF model. In this section, we

construct continuous piecewise linear functions and prove their convergence to the minimizer

of the ROF model. Let f ∈ L2(Ω) be fixed and Qh f the discretization of f with respect to the

quadrangulation �h. Let z f ,h be the minimizer of the functional

E
f
h (u) = Jh(u)+

h2

2λ ∑
1≤i, j≤N

|ui, j− (Qh f )i, j |2, (3.1)
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over RN×N with Jh(u) defined in (2.15). We denote the minimizer of the ROF model in the

continuous setting by

u f = argmin
u∈BV (Ω)

E
f

λ (u), (3.2)

where E
f

λ
(u) is defined in (1.3). We present two important properties of the ROF model that

are at the foundation of the convergence analysis carried in this section.

THEOREM 3.1. Let u f ∈ BV(Ω) be the minimizer of the ROF functional E
f

λ (u). Then,

for any v ∈ BV (Ω), there holds

∥

∥v− u f
∥

∥

2

2
≤ 2λ

(

E
f

λ
(v)−E

f

λ
(u f )

)

. (3.3)

Moreover, if ug is the minimizer of E
g

λ
(u), then

‖u f − ug‖2 ≤ ‖ f − g‖2. (3.4)

Proof. The proof is straightforward and relies on the fact that E
f

λ (u) is subdifferentiable

with respect to the topology of L2(Ω).
The inequalities (3.3) and (3.4) were exploited by Wang and Lucier [20] to study the

error bound of a piecewise constant approximation of the continuous ROF model.

THEOREM 3.2 (Maximum principle). Suppose that f ∈ L∞(Ω) and let u f be the mini-

mizer of E
f

λ (u) on BV (Ω). Then, u ∈ L∞(Ω) and

‖u f‖∞ ≤ ‖ f‖∞. (3.5)

More precisely, we have

inf
x∈Ω

f (x)≤ u(x)≤ sup
x∈Ω

f (x) for a.e x ∈Ω. (3.6)

Proof. Let u ∈ BV (Ω) be fixed. Let M = ‖ f‖∞ and set

uM(x) =

{

u(x), |u(x)| ≤M

sign(u(x))M, |u(x)|> M.

The sub-level set of the function uM are

UM
t =











Ω t > M,

Ut |t| ≤M,

/0, t <−M,

where Ut is the sublevel set of u at level t. On the one hand, since |D1Ω|(Ω) = 0 and

|D1 /0|(Ω) = 0, it follows from the coarea formula that

|DuM|(Ω) =

∫ M

−M
|D1Ut |(Ω)dt ≤ |Du|(Ω).

On the other hand, it is easy to check that |u(x)− f (x)| ≥ | f (x)−uM(x)| for a.e. x ∈Ω. Thus,

we have E
f

λ
(u)≥ E

f

λ
(uM) and it follows that if u f is the minimizer of E

f

λ
, then by uniqueness

of the minimizer it must be the case that u f = (u f )M . Thus,

|u f (x)| ≤M, for a.e x ∈Ω,
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and (3.5) holds. A similar truncation technique shows that (3.6) holds as well.

We now construct a continuous piecewise linear approximation of u f and show that it

converges to u f for a special class of functions f . Let Phz f ,h be the continuous piecewise

linear interpolation of the discrete minimizer z f ,h over the triangulation ∆h. By the estimate

(3.3), we have

∥

∥

∥
Phz f ,h− u f

∥

∥

∥

2

2
≤ 2λ

(

E
f

λ (Phz f ,h)−E
f

λ (u
f )
)

.

Therefore, it suffices to show that |E f

λ
(Phz f ,h)−E

f

λ
(u f )| → 0 as h→ 0 to get that the contin-

uous piecewise linear functions Phz f ,h approximate the solution of the ROF model. To this

aim, we shall compare both E
f

λ
(Phz f ,h) and E

f

λ
(u f ) to the discrete energy E

f
h (z

f ,h).

LEMMA 3.3. Let z f ,h be the minimizer of the functional E
f

h (u) with respect to R
N×N .

Then

E
f

λ (Phz f ,h)≤ E
f

h (z
f ,h)+

1

2λ
Cω( f ,h)2 (Cω( f ,h)2 + 8‖ f‖2) (3.7)

where C are positive constant depending only on f .

Proof. Since Jh(z
f ,h) = |DPhz f ,h|(Ω) which is the reason we so defined discrete total

variation in (2.15), we have

2λ (E
f

λ (Phz f ,h)−E
f

h (z
f ,h)) = ‖Phz f ,h− f‖2

2− ∑
1≤i, j≤N

h2|z f ,h
i, j −Qh fi, j |2

≤ ‖PhQh f − f‖2(‖PhQh f − f‖2 + 2‖Ph(z
f ,h−Qh f )‖2)+

+ ‖Ph(z
f ,h−Qh f )‖2

2− ∑
1≤i, j≤N

h2|z f ,h
i, j −Qh fi, j |2

≤ ‖PhQh f − f‖2(‖PhQh f − f‖2 + 2‖Ph(z
f ,h−Qh f )‖2), (3.8)

where the last inequality above follows from the proof of Lemma 2.4.

To finish the proof, it suffices to show that

‖PhQh f − f‖2 ≤Cω( f ,h)2 and ‖Ph(z
f ,h−Qh f )‖2 ≤ 4‖ f‖2. (3.9)

First, from the proof of Lemma 2.4 it is easy to show that

‖Ph(z
f ,h−Qh f )‖2

2 ≤ ∑
1≤i, j≤N

h2|z f ,h
i, j − (Qh f )i, j |2

≤ 2λ E
f
h (0)

= ∑
1≤i, j≤N

h2|(Qh f )i, j |2 ≤ 4‖ f‖2
L2 .

Next, by Lemma 2.8, we have

‖PhQh f − f‖2 ≤ ‖PhQh f −ChQh f‖2 + ‖ChQh f − f‖2

≤ (K1 +K2)ω( f ,h)2 by (2.28) and (2.29)

Therefore, the inequalities (3.9) holds with C = K1 +K2 and the proof is complete.

LEMMA 3.4. Let z f ,h be the solution of (3.1). For 0 < ε ≪ 1, set u
f
ε = X [u f ] ∗ ρε . If

f ∈ L∞(Ω), then

E
f

h (z
f ,h)≤ E

f

λ (u
f
ε )+ 16‖ f‖2

∞h+O(h/ε2). (3.10)
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Proof. With a slight abuse of notation, we also let u
f
ε be the element of RN×N obtained

by evaluating u
f
ε at the grid points ωi, j. Since z f ,h is the minimizer of E

f
h (u), we have

E
f
h (z

f ,h)≤ E
f
h (u

f
ε ) = Jh(Phu

f
ε )+

1

2λ

N

∑
i, j=1

h2|u f
ε (ωi, j)− (Qh f )i, j|2

≤
∫

Ω
|∇(Phu

f
ε )|dx+

1

2λ

N

∑
i, j=1

h2|u f
ε (ωi, j)− (Qh f )i, j |2

≤
∫

Ω
|∇u

f
ε |dx+

∫

Ω
|∇(Phu

f
ε − u

f
ε )|dx+

1

2λ

N

∑
i, j=1

h2|u f
ε (ωi, j)− (Qh f )i, j |2. (3.11)

Next, for each 1≤ i, j ≤ N, we have

|u f
ε (ωi, j)− (Qh f )i, j |2 = |u f

ε (ωi, j)− (Qhu
f
ε )i, j|2 + |(Qhu

f
ε −Qh f )i, j |2+

+ 2|u f
ε (ωi, j)− (Qhu

f
ε )i, j| · |(Qhu

f
ε −Qh f )i, j | (3.12)

and by the mean value theorem

|u f
ε (ωi, j)− (Qhu

f
ε )i, j|2 ≤

1

|Ωi, j|

∫

Ωi, j

|u f
ε (ωi, j)− u

f
ε (x)|2dx

≤ 1

|Ωi, j|
sup

x∈Ω̄i, j

|∇u
f
ε (x)|2

∫

Ωi, j

|x−ωi, j|2dx

≤ C

ε2
|Ωi, j| where we used |x−ωi, j|2/|Ωi j| ≤ 8 (3.13)

where C is a positive constant depending only on u through its L1- norm. Thus

N

∑
i, j=1

h2|u f
ε (ωi, j)− (Qh f )i, j |2 ≤C|Ω|h

2

ε2
+

N

∑
i, j=1

h2|(Qhu
f
ε −Qh f )i, j |2 +C′

h

ε
, (3.14)

where C,C′ are positive constants depending on f , u f , and Ω. Now, we establish an upper

bound for the second term on the right in the inequality (3.14). By definition of the operator

Qh, the Cauchy-Schwarz inequality, and Theorem 3.2, we have

N

∑
i, j=1

h2|Qh(u
f
ε − f )i, j|2 ≤ ‖u f

ε − f‖2
L2(Ω)+ 16‖ f‖2

∞h. (3.15)

Taking into account (3.15) and (3.14) in the inequality (3.11), we obtain

E
f
h (z

f ,h)≤ E
f

λ
(u f

ε )+ 16‖ f‖2
∞h+C|Ω|h

2

ε2
+C′

h

ε
+ ‖Phu

f
ε − u

f
ε‖W1,1(Ω). (3.16)

Since the rectangular domain is endowed with a type I triangulation, we have (see [5, Theorem

4.4.20, p. 121])

‖Phu
f
ε − u

f
ε‖W1,1(Ω) ≤Ch ∑

|α |=2

‖Dαu
f
ε‖L1(Ω) ≤C′′

h

ε2
, (3.17)
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where C′′ is a constant that depends on ‖u‖L1(Ω). Thus, the estimate (3.16) becomes

E
f
h (z

f ,h)≤ E
f

λ
(u f

ε )+ 16‖ f‖2
∞h+C

h

ε2
,

where we have used the fact that x2 < x for any 0 < x < 1.

We now prove the main result of this paper.

THEOREM 3.5. Suppose that f ∈ Lip
(

α,L2(Ω)
)

∩L∞(Ω) for some α ∈ (0,1]. Let z f ,h

be the minimizer of the functional E
f
h (u) in R

N×N and u f be defined by (3.2). Then Phz f ,h

converges in L2(Ω) to u f as h→ 0.

Proof. For any 0 < h≪ 1 and any ε > 0, we have

‖Phz f ,h− u f‖2
L2(Ω) ≤ 2λ

[

E
f

λ (Phz f ,h)−E
f

λ (u
f )
]

by (3.3)

≤ 2λ
[

E
f

λ
(Phz f ,h)−E

f
h (z

f ,h)+E
f
h (z

f ,h)−E
f

λ
(u f )

]

.

Next, by equation (3.7) in Lemma 3.3, we have

E
f

λ
(Phz f ,h)−E

f
h (z

f ,h)≤ 1

2λ
ω( f ,h)2 (ω( f ,h)2 +C‖ f‖2)

and equation (3.10) in Lemma 3.4 yields

E
f

h
(z f ,h)−E

f

λ
(u f )≤ E

f

λ
(u f

ε )−E
f

λ
(u f )+ 16‖ f‖2

∞h+C
h

ε2
.

Thus,

‖Phz f ,h− u f‖2
L2(Ω) ≤ ω( f ,h)2 (ω( f ,h)2 +C‖ f‖2)+

+ 32λ‖ f‖2
∞h+ 2Cλ

h

ε2
+ 2λ (E

f

λ (u
f
ε )−E

f

λ (u
f )). (3.18)

Since f ∈ Lip
(

α,L2(Ω)
)

we have ω( f ,h)2 ≤ O(hα). Letting ε = h1/2(α+1), we infer

from inequality (3.18) that

‖Phz f ,h− u f‖2
L2(Ω) ≤Chα/(α+1)+ 2λ (E f

λ
(u f

ε )−E
f

λ
(u f )), (3.19)

where we have used the fact that the function x 7→ ax is decreasing when 0 < a < 1.

Since u
f
ε → u f in L2(Ω) as ε→ 0, it follows from Theorem 2.5 (b) that for our choice of

ε = h1/2(α+1), E
f

λ
(u f

ε )−E
f

λ
(u f )→ 0 as h→ 0. Thus, taking the limit as h→ 0 in (3.19), we

conclude that ‖Phz f ,h− u f‖L2(Ω)→ 0 as h→ 0 and the proof is complete.

COROLLARY 3.6. Under the assumptions of Theorem 3.5, we have

Jh(Phz f ,h)→ J(u f ), when h→ 0.

Proof. This is a direct consequence of the convergence of E
f
h (Phz f ,h) to E

f

λ
(u f ) as h→ 0.

REMARK 3.7. It transpires from the proof above that to establish a convergence rate

of the proposed piecewise linear approximation, one will need a convergence rate of E
f

λ (u
f
ε )

to E
f

λ
(u f ) which we have not been able to establish at this point. Moreover the optimal

convergence rate, if one could be derived, should be of the order of O(hβ ) with 0 < β ≤ 1/2.

The convergence is slower for smaller values of β and one would need very small values of h

to get significant evidence of the convergence when doing numerical simulations.



PIECEWISE LINEAR APPROXIMATION OF THE ROF MODEL 15

4. Numerical experiments. In this section we formulate two algorithms for computing

the discrete solution z f ,h and show numerical evidence to support the convergence result

established in Theorem 3.5.

4.1. The algorithms. The objective functional of which z f ,h is a special case of prox-

imal operator [12]; thus the proximal forward-backward splitting algorithm [12] may be

adapted to this problem. One could also adapt the split Bregman method [15] to obtain a

fast algorithm for computing z f ,h. However, in this paper we use the duality method to derive

our algorithms.

Let X := R
N×N and Y = X×X . To study iterative algorithms for computing the discrete

minimizer z f ,h, we introduce the discrete divergence operators div+ : Y →X and div− : Y →X

associated with the discrete gradients ∇+ and ∇−, respectively, and defined by

div+(p)i, j =







0 if i = N or j = N

p1
i, j

h
otherwise

−







0 if i = 1 or j = N

p1
i−1, j

h
otherwise

+







0 if i = N or j = N

p2
i, j

h
otherwise

−







0 if i = N or j = 1

p2
i, j−1

h
otherwise.

(4.1)

and

div−(p)i, j =







0 if i = N or j = 1

p1
i+1, j

h
otherwise

−







0 if i = 1 or j = 1

p1
i, j

h
otherwise

+







0 if i = 1 or j = N

p2
i, j+1

h
otherwise

−







0 if i = 1 or j = 1

p2
i, j

h
otherwise

(4.2)

It can be shown that the discrete divergence operators div+ and div− are the negative of the

adjoint operators of the discrete gradient ∇+ and ∇−, respectively.

By standard duality arguments similar to the one used in [6, 7], we show that the mini-

mizer z f ,h is given by

z f ,h = Qh f +
λ

2
(div+(p̄)+ div−(q̄)) , (4.3)

where

(p̄, q̄) ∈ argmin
p,q∈BY

|λ (div+(p)+ div−(q̄))+ 2Qh f |2, (4.4)

with |p|∞ = max(|pi, j| : 1≤ i, j ≤ N) and BY = {p ∈ Y : |p|∞ ≤ 1}.
By observing that the point (p̄, q̄) defined above is characterized by

∀τ > 0,

{

p̄ = PBY
( p̄+ τ∇+ [div+(p̄)+ div−(q̄)+ 2 f/λ ]) ,

q̄ = PBY
(q̄+ τ∇− [div+(p̄)+ div−(q̄)+ 2 f/λ ]) ,

(4.5)

where

PBY
(p)i, j =

(

p1
i, j

max(1, |pi, j|)
,

p2
i, j

max(1, |pi, j|)

)

, 1≤ i, j ≤ N
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is the orthogonal projection of p onto BY , we get the following algorithm for computing the

solution z f ,h.

ALGORITHM 4.1 (Dual Projected-Gradient). Let τ > 0 be fixed. For n = 0,

let p0 = q0 = 0.

Step 1: Compute un

un = Qh f +
λ

2
[div+(pn)+ div−(qn)] . (4.6)

Step 2: Compute pn+1 and qn+1

pn+1 = PBY

(

pn +
2τ

λ
∇+(un)

)

,

qn+1 = PBY

(

qn +
2τ

λ
∇−(un)

)

.

(4.7)

Step 3: Until the stopping criterion is met, let n← n+ 1 and return to step 1.

The algorithm 4.1 is a special case of Bermúdez-Moreno Algorithm [4] and its conver-

gence can be obtained as in [3]. Specifically we have the following theorem.

THEOREM 4.2. If 0 < τ < h2/8, then Algorithm 4.1 converges. More precisely, given

p0, q0 ∈ BY , there exists a point (p̄0, q̄0) satisfying (4.4) such that the sequence (pn,qn) de-

fined by (4.7) converges to (p̄0, q̄0) and the sequence un defined by (4.6) converges to z f ,h.

Proof. A direct proof is obtained by modifying and completing the argument in [13] and

may be found in [18] .

An alternating version of Algorithm 4.1 is obtained by using pn+1 to compute qn+1 thus

resulting in the following algorithm

ALGORITHM 4.3 (Alternating Dual Projected-Gradient). Let τ > 0 be fixed and choose

p0, q0 ∈ BY .

Step 1: Compute un

un = Qh f +
λ

2
[div+(pn)+ div−(qn)] . (4.8)

Step 2: Compute pn+1 and qn+1

{

pn+1 = PBY
(pn + τ∇+ [div+(pn)+ div−(qn)+ 2 f/λ ]) ,

qn+1 = PBY
(qn + τ∇− [div+(pn+1)+ div−(qn)+ 2 f/λ ]) .

(4.9)

Step 3: Until the stopping criterion is met, let n← n+ 1 and return to step 1.

While the proof of the convergence of Algorithm 4.3 is still eluding us, the numerical

experiments suggest that one should be able to prove a convergence result for 0 < τ < 1/4.

4.2. Numerical tests. We report the results of two numerical experiments with Algo-

rithm 4.1. First, we compare the performance of the algorithms proposed above to Cham-

bolle’s fixed-point algorithm [7], and the projected-gradient algorithm proposed in [8]. The

noised images are obtained by adding a realization of a zero mean Gaussian random variable

to the images in Figure 4.1. It should be noted that in our tests, we did not attempt to choose

the parameters τ and λ for optimal performance of the algorithms.

We shall use the following abbreviations to identify the algorithms under consideration

here.

ALG1: The dual fixed point iterative algorithm described in [7].

ALG2: The dual projected-gradient algorithm described in [8, 13].
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Fig. 4.1: The images used in the numerical experiments below.

(a) Lena 256×256. (b) Peppers 256×256. (c) Boats 512×512.

Fig. 4.2: Convergence of the four algorithms for the image in Figure 4.1a with σ = 25,

τ = 1/32, and λ = 1/16. The PSNR is computed relative to the ground truth in Figure 4.1a.

The algorithm are terminated after 1000 iterations or when the mean square error (MSE) to

the ground truth is less than 10−8 or the absolute change in MSE at consecutive iterations is

less than 10−13.
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ALG4

ALG3: The dual projected-gradient algorithm presented in Algorithm 4.1.

ALG4: The alternating dual projected-gradient algorithm presented in Algorithm

4.3.

The algorithms that we proposed have the best convergence at the onset (see Figure

4.2); thus would be appropriate for use in situations where one needs to clean an image as a

preprocessing step of an image analysis task.

Table 4.1 and Table 4.2 below show the capability of Algorithm 4.1 to remove noise

for various noise levels. The inputs for all four algorithms are obtained by adding a zero
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mean Gaussian noise with standard deviation σ to the images in Figure 4.1. Our experiments

show that the two projected gradient algorithms that we developed are effective and performs

equally with the algorithms ALG1 and ALG2. Moreover, our algorithms get to a viable

solution within the first ten iterations, making them favorable tools when denoising is required

merely as a preprocessing step in the image analysis.

Table 4.1: Comparison of the Algorithms using the image in Figure 4.1b. We report the

results in the format a(b,c), where a is the PSNR, b and c are the number of iterations and

the CPU time used in reaching the PSNR value, respectively. The algorithm are terminated

after 1000 iterations or when the MSE is less than 10−8 or the absolute change in MSE at

consecutive iterations is less than 10−13.

τ λ σ ALG1 ALG2 ALG3 ALG4

15.00 31.79(103,10s) 31.78(103,15s) 31.81(103,31s) 31.87(43,2s)
1
48

1
24

20.00 29.37(103,10s) 29.37(103,15s) 29.40(103,31s) 29.41(86,3s)

25.00 26.72(103,10s) 26.72(103,15s) 26.75(103,31s) 26.75(110,4s)

30.00 24.21(103,10s) 24.21(103,15s) 24.23(205,7s) 24.23(115,4s)

15.00 31.31(103,10s) 31.28(103,15s) 31.29(103,31s) 31.30(348,12s)

20.00 30.34(103,10s) 30.32(103,15s) 30.35(103,31s) 30.36(307,11s)
1
32

1
16

25.00 28.81(103,10s) 28.80(103,15s) 28.85(103,31s) 28.86(76,3s)

30.00 26.73(103,10s) 26.72(103,15s) 26.77(103,5s) 26.77(116,4s)

Table 4.2: Comparison of the Algorithms using the image in Figure 4.1c. We report the results

in the form a(b,c), where a is the PSNR, b and c are the number of iterations and the CPU

time for reaching the PSNR value, respectively. The algorithms are terminated after 1000

iterations or when the MSE is less than 10−8 or the absolute change in MSE at consecutive

iterations is less than 10−13.

τ λ σ ALG1 ALG2 ALG3 ALG4

15.00 30.49(103,60s) 30.48(103,60s) 30.52(218,32s) 30.51(115,22s)
1
48

1
24

20.00 28.72(103,60s) 28.72(103,72s) 28.77(379,52s) 28.77(156,30s)

25.00 26.37(103,60s) 26.37(566,41s) 26.42(319,44s) 26.42(144,28s)

30.00 24.11(103,60s) 24.11(103,73s) 24.14(291,40s) 24.14(133,26s)

15.00 29.58(103,60s) 29.56(103,72s) 29.56(103,136s) 29.57(240,45s)

20.00 29.12(103,60s) 29.11(103,72s) 29.13(157,21s) 29.13(108,21s)
1
32

1
16

25.00 28.04(103,60s) 28.03(103,72s) 28.09(276,38s) 28.09(166,32s)

30.00 26.38(103,60s) 26.38(960,71s) 26.44(371,53s) 26.44(171,34s)

We then used the iterative algorithm 4.1 to obtain numerical evidence confirming the
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theoretical result in Theorem 3.5 with the function

f = 2551C,

where C is the disk centered at (1/2,1/2) with radius R = 1/4. We draw the attention of the

reader to the fact [9] that in this case the minimizer u f is given by

u f = 255max(1− 2λ/r,0)1C, ∀λ > 0.

Note that the size of the discrete data grows as 1/h2 as h→ 0, therefore we will only show the

result of moderate size data. See Table 4.3 demonstrating the convergence of the piecewise

linear interpolation to the minimizer of E
f

λ
(u) as h→ 0.

Table 4.3: The L2(Ω) distance between u f and Phu100 where u100 is the approximation of z f ,h

computed using Algorithm 4.1. It is already apparent that the distance is decreasing with h

even though we are only using an approximation of the discrete minimizer z f ,h.

λ/R

h 2−3 2−5 2−7 2−9

2−5 25.0682 18.4406 17.9938 17.9808

2−6 26.1967 13.8377 11.5935 11.3495

2−7 21.0148 14.1954 9.1324 8.5836

2−8 17.8916 14.1036 7.3424 6.0095

2−9 16.1267 10.2853 7.3082 4.5298

2−10 15.1462 7.6813 7.1739 3.6942

5. Conclusion. In this paper, we were interested in the numerical computations of the

minimizer of the Rudin-Osher-Fatemi model for image denoising:

argmin
u∈BV (Ω)

{

∫

Ω
|Du|(Ω)+

1

2λ

∫

Ω
|u− f |2dx

}

.

Although this model was introduced for its practical purpose of digital image enhance-

ment, its mathematical analysis is important on its own right and has generated lots of inter-

esting literature. The theory guarantees the existence of the solution of the ROF model for

any f ∈ L2(Ω) and any λ > 0, however, in general we do not have analytical formulæ of the

solutions. It is also known that if f ∈ BV (Ω) is continuous, then the minimizer will be con-

tinuous as well. The research done in this paper gives us a tool to visualize such solutions in

the absence of their analytical formulæ. We constructed piecewise linear interpolations of the

minimizers of discrete functionals derived by discretizing the data function f and show that

the family of piecewise linear polynomials thus generated converges to the solution u f . We

also described an algorithm for computing the discrete solution and showed its convergence.

This is the first attempt to compute numerical approximation of the ROF minimizer using

continuous functions.

The researchers in [20] have used similar techniques to approximate the minimizer of

the ROF functional using piecewise constant functions and established a convergence rate
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under weaker assumptions on the data function f . We extended their analysis to study the

approximation with continuous piecewise linear functions, and simplified the proof of the

comparison Lemma 3.3. Moreover, unlike these authors we studied an iterative algorithm

for computing the discrete solution directly from the discrete model used to establish the

convergence. However, we did not obtain an error rate as we have not been able to obtain error

rates for the convergence of J(u
f
ε ) to J(u f ) and the compatibility of u f with the translations

of the data function f .
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