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Abstract

The problem of matrix completion is a significant one. The matrix completion

problem is, given a partially known matrix, fill in the missing entries as best as possible.

In general we need further assumptions about our matrix in order to define what ”as

best as possible” means. In this thesis, we will assume that our complete matrix is

part of a low rank matrix, leading to the low-rank matrix completion problem.

The problem of low rank matrix completion is, given a partially known matrix, find

a completed matrix with low rank. This thesis proposes a novel method of solving the

low-rank matrix completion problem which we call the Schur gradient descent method.

This method relies on finding a submatrix of large determinant in modulus called a

dominant submatrix which is done with the maxvol algorithm. A greedy version of this

algorithm is presented which improves on the original in computational time. Moreover,

we present a new upper bound on the number of possible dominant submatrices in

terms of the independence number of Johnson graphs. The Schur gradient descent

method and the greedy maxvol algorithm are then combined to give us the maxvol

Schur gradient descent method.

Similarly to matrix completion, the problem of tensor completion is, given a par-

tially known tensor, find a completed tensor with low rank. There are multiple notions

of the rank of a tensor. We give sufficient conditions for a partially known tensor to

have a unique low multilinear rank completion.
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1 Introduction

1.1 Matrix Completion Motivation

In 2006, Netflix announced a competition with a grand prize of one million dollars. The

problem was, given data on user movie ratings, create a recommendation system which will

suggest films users would be likely to watch and enjoy. The grand prize would be given out

to anyone who could improve Netflix’s existing algorithm by ten percent. This is an example

of a data completion problem. We have an incomplete set of data, and we would like to

complete that set of data, using the known data, as best as possible.

It is often useful to encode our partially known data in a matrix. In the case of Netflix’s

problem, on one axis we index the users, and on the other axis we index the movies. In the

corresponding entry between a user and a movie, we enter the user’s rating of the movie.

The result is an incomplete matrix, and our goal is to fill in the matrix as best as possible

to predict how users will rate movies that they have not watched. This problem sparked an

interest among mathematicians in studying the matrix completion problem.

A first approach to the matrix completion problem is to define a number of features of

our data which we can use to calculate intermediate connections between users and movies.

In this example, we can uses genres such as adventure and comedy as our features. We assign

strengths between users and features, and strengths between features and movies to decide

whether or not we should recommend a movie.

To calculate whether or not a user would like a movie, we multiply the strengths between

the user-feature score and feature-movie score, and sum over all features. In the example

shown in fig. 1, the first user would be given a score of 3 · 2 + 1 · 5 = 11 as a prediction for

how much they would enjoy the movie B. There are multiple ways we can get this data. For

example, Netflix had at one point sent users surveys to determine which movie genres they

enjoyed the most.
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Figure 1: Example of strengths between a users, features, and movies which are represented
with colored boxes.

We can represent user-feature and feature-movie data as two matrices as shown in fig. 2.

To obtain the corresponding user-movie rating, we simply multiply these two matrices to-

gether.

The issues with this method are that it may be unrealistic to gather this data from all

users or all movies. Moreover, these features are how we as humans describe movies, and

may not be the most general way to represent our data.

Instead, we may reverse the problem. We gather scores on how much users enjoyed a

particular movie through data such as ratings as in fig. 3. Then, given some incomplete

data on user-movie enjoyment, we produce two factor matrices U and V such that the

corresponding entries in the multiplication UV agrees with our known data. If we can

find such matrices then we may predict any user-movie enjoyment score by looking at the

corresponding entry in UV .

The key aspect to note here is that the resulting matrix will be low-rank, depending on

the size of U and V . In particular, if we assume that there are r features which describe our

data, then the resulting matrix will have rank at most r. Therefore, we don’t necessarily
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Figure 2: User-Movie rating prediction matrix obtained through matrix multiplication.
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Figure 3: User-Movie prediction matrix obtained through latent factor matrices.
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need to find explicit factor matrices U and V , all we need to do is to find a rank r matrix

M with entries equal to the given known entries.

1.2 Mathematical Preliminaries

We will now express the matrix completion problem in more formal mathematical terms.

Let Mn×m denote the space of matrices with n rows and m columns over the real numbers R

or the complex numbers C. Given a set of observed elements {Mij}, where Mij is in index

(i, j) of a partially known n ×m matrix, we let Ω ⊂ [n] × [m] denote the index set of the

known elements Mij, where [n] = {1, . . . , n}. In other words, if Mij is a known element,

then (i, j) ∈ Ω, and the total number of known elements is |Ω|. We may also represent Ω as

a binary n×m matrix where the entry in index (i, j) is 1 if Mij is known, and 0 otherwise.

It is desirable to use the fewest number of features possible to represent our data, which

corresponds to minimizing the rank of our completed matrix. We may now express the

matrix completion problem as finding a solution to the non-convex minimization problem

min
X∈Mn×m

rank(X)

s.t. Xij = Mij ∀(i, j) ∈ Ω

Let MΩ ∈ Mn×m denote the partially known n × m matrix with known entries Mij in

entry (i, j) ∈ Ω, and zeros in unknown entries. We will often denote unknown elements of

a matrix with an empty square � instead of zero. There may be finitely many, infinitely

many, or zero ways to complete MΩ into a rank r matrix. Consider the following incomplete

matrices.
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Example 1.1. Let

MΩ =



� 1 2 3

1 � 3 4

1 3 � 5

1 4 5 �


.

Then MΩ has the unique rank 2 completion

M =



1 1 2 4

1 2 3 5

1 3 4 6

1 4 5 7


.

If we change the known entries in the last column of MΩ in example 1.1, we have the

following example.

Example 1.2. Let

MΩ =



� 1 2 4

1 � 3 5

1 3 � 6

1 4 5 �


.

Then MΩ has exactly two rank 2 completions, which are

M1 =



1 1 2 4

1 2 3 5

1 3 4 6

1 4 5 7


M2 =



−2/3 1 2 4

1 21/8 3 5

1 3 39/11 6

1 4 5 26/3


.

To verify that M1 and M2 are the only rank 2 completions of MΩ, note that a matrix

has rank at most r if and only if all (r + 1)× (r + 1) minors vanish. Consider the system of

5



equations in four variables consisting of all 3× 3 minors of the matrix

M(x, y, z, w) =



x 1 2 4

1 y 3 5

1 3 z 6

1 4 5 w


.

This gives a system of 16 degree 2 and degree 3 polynomials. One can verify using a computer

algebra system that M1 and M2 are the only two solutions to this system of equations.

We will now introduce the space of fixed rank r matrices. Let

Mr = {M ∈Mn×m | rank(M) = r}

denote the space of n×m rank r matrices over R or C, where r ≤ min(n,m). ThenMr is a

(n+m)r− r2 dimensional manifold [4]. Note thatMr is not a closed set. In particular, we

may approximate any low-rank matrix as the limit of a sequence of high-rank matrices, but

we may not approximate high-rank matrices as the limit of a sequence of low-rank matrices.

So the closure of Mr is the space of matrices with rank at most r, which we will denote

Mr = {X ∈Mn×m | rank(X) ≤ r}.

The dimension of Mr is also equal to (n + m)r − r2, since the closure operation does not

change the dimension of a manifold.

We will now recall some notions from algebraic geometry. A closed set V ⊂ Ck is called an

algebraic variety if it is the zero set of a set of a system of polynomial equations. The Zariski

closure of a set S ⊂ Ck is the smallest algebraic variety V which contains S. The Zariski

closure of S may be expressed as the intersection of all algebraic varieties which contain S.

Since a matrix M has rank at most r if and only if all (r+ 1)× (r+ 1) minors of M vanish,

6



Mr is equal to the zero set of all (r+ 1)× (r+ 1) minors of an n×m matrix. ThereforeMr

is an algebraic variety, and it is the Zariski closure of Mr since it is the closure of Mr and

an algebraic variety. Mr is also sometimes referred to as the determinantal variety.

An algebraic variety V is called irreducible if it cannot be expressed as the union of two

proper sub-varieties. That is, a variety V is irreducible if it cannot be written as V = V1∪V2

for proper subvarieties V1 ⊂ V and V2 ⊂ V . Then Mr is an irreducible variety. It can also

be shown that the set of singular points ofMr is the set of matrices with rank at most r−1,

that is, it is the set Mr−1 ⊂ Mr. To verify this note that the partial derivatives of the all

(r + 1)× (r + 1) minors are equal to zero exactly on the set Mr−1.

Define the map PΩ : Mn×m → Mn×m such that PΩ(X) fixes entry Xij if (i, j) ∈ Ω, and

sets Xij equal to zero if (i, j) /∈ Ω. Here PΩ is the orthogonal projection operator onto the

subspace of matrices with entries equal to 0 outside of Ω.

Example 1.3. Let Ω = {(1, 1), (2, 2), (2, 3), (3, 2)}. Then |Ω| = 4, and

PΩ(


1 2 3

4 5 6

7 8 9

) =


1 0 0

0 5 6

0 8 0

 .
Given a partially known matrix MΩ, if M is a completion of MΩ, then PΩ(M) = MΩ.

Let AΩ = P−1
Ω (MΩ) be the linear variety of any possible completions of MΩ. In other words,

a matrix X is in AΩ if PΩ(X) = MΩ. AΩ is irreducible since it is a linear variety.

Note that since Mr is the space of matrices with rank at most r, and AΩ is the space

of any possible completion of MΩ, Then finding a rank at most r completion M of MΩ is

equivalent to finding a point M ∈ AΩ ∩Mr.

7



2 Low-Rank Matrix Completion Algorithms and The-

ory

Given a partially known matrix MΩ along with an index set of known entries Ω, the goal

of low-rank matrix completion is to find a completed matrix M with entries equal to the

known entries in MΩ such that rank(M) is minimized. There are many existing algorithms

for finding a low-rank matrix completion. In this section, we will present a few of these

algorithms.

2.1 Alternating Projection

The notes in this section are taken on [16]. The method of alternating projection has proven

to be an effective way of finding intersection points between two manifolds. As the name

suggests, starting with an initial guess, we alternate between projecting onto each manifold

obtaining successive approximations of a point in the intersection. While most extensively

studied in application to find intersections of convex sets, alternating projection methods

have also been applied to find intersections non-convex sets. Some issues that may occur are

that a projection onto a non-convex set may not be single valued. Moreover, the projection

may be difficult to compute.

While AΩ is convex, as it is a linear variety, Mr is not convex for r > 0. However,

given X ∈ Mn×m, if rank(X) > r, then a closest rank r projection PMr(X) may be easily

calculated using the singular value decomposition (SVD). To calculate PMr(X), take the

SVD of X obtaining an n × n orthogonal matrix of left-singular vectors U , an m × m

orthogonal matrix of right-singular vectors V , and an n × m diagonal matrix Σ such that

X = UΣV ∗. The diagonal entries of Σ are non-negative real numbers called the singular

values of X denoted σi for 1 ≤ i ≤ min(n,m), and are ordered such that σi+1 > σi for all i.

Given 1 ≤ r ≤ min(n,m), let Σr be the r × r diagonal matrix with diagonal entries equal

8
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to the r largest singular values of X, let Ur be the n× r matrix with columns consisting of

the first r left-singular vectors of X, and let Vr be the m× r matrix with columns consisting

of the first r right-singular vectors of X. Then if σi > 0 for 1 ≤ i ≤ r, a closest rank r

projection of X may be calculated as PMr(X) = UΣrV
∗. Moreover, this projection is unique

if σr 6= σr+1. The projection of X onto AΩ, PAΩ
(X), is simply calculated by setting all of

the entries of X in the indices of Ω to the corresponding known entries of MΩ.

Let us suppose M ∈ AΩ ∩Mr. Then given X0 an initial guess of M and a tolerance ε,

the alternating projection algorithm runs as follows.

Algorithm 1: Alternating Projection [15]

Input: incomplete matrix MΩ, initial guess X0, stopping criterion
Result: Xk an approximation of M such that rank(M) = r and PΩ(M) = MΩ

for k = 1, . . . do
Yk = PMr(Xk−1);
Xk = PAΩ

(Yk);

We require some stopping criterion as an input. For example, we could fix a tolerance ε,

and loop until ‖Xk −Xk−1‖ < ε. Alternatively, if we only want to run the algorithm for a

certain number of steps, we could fix the number of steps N and loop for k = 1, . . . , N .

Let TAΩ
(M) denote the tangent space of AΩ at point M , and let TMr(M) denote the

tangent space of Mr at point M . Then if M ∈ Mr ∩ AΩ, and TAΩ
(M) ∩ TMr(M) = {0},

then algorithm 1 converges to M linearly.

2.2 Alternating Minimization

The notes in this section are taken on [18]. The alternating minimization method is an

empirically successful method for finding a low-rank completion of MΩ. Moreover, it formed

a critical component in the winning entry of the Netflix problem. The objective of alternating

minimization is to find a completed matrix in bilinear form M = LR> with L being n×r and

R being m × r such that the entries of M correspond with the known entries of MΩ. Such

9
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an M is found by alternating between optimizing L and R. In particular, the non-convex

problem to solve is

min
L,R

1

2

∥∥PΩ(LR>)−MΩ

∥∥2
.

The alternating minimization algorithm runs as follows.

Algorithm 2: Alternating Minimization [18]

Input: incomplete matrix MΩ, initial guess R0 ∈Mm×r, stopping criterion
Result: Xk = LkR

>
k an approximation of M such that rank(M) = r and

PΩ(M) = MΩ

for k = 1, . . . do

Lk = arg min
L∈Mn×r

∥∥PΩ(LR>k−1)−MΩ

∥∥2
;

Rk = arg min
R∈Mm×r

∥∥PΩ(LkR
>)−MΩ

∥∥2
;

We may solve the minimization at each step with the method of least squares.

2.3 Orthogonal Rank-One Matrix Pursuit

The notes in this section are on [17]. Recall that we may express a matrix X as a weighted

sum of rank 1 matrices Mi such that ‖Mi‖ = 1 for all i. That is, we may write M as

X = M(θ) =
r∑
i=1

θiMi.

Here θ is the vector of weights in the sum. One way to calculate Mi and θi is with the

singular value decomposition of X, by setting θ equal to the vector of singular values, and

Mi = uiv
>
i where ui and vi are the ith left and right-singular vectors of X respectively.

Note that the minimum value of ‖θ‖0 over all possible choices of θ is equal to the rank of

M , where ‖θ‖0 is equal to the number of non-zero elements in the vector θ. Therefore, we

10



may formulate the matrix completion problem as finding a solution to the minimization

min
θ
‖PΩ(M(θ))−MΩ‖

s.t. ‖θ‖0 ≤ r.

Our goal is to choose proper basis matricesMi, and proper weights θi. We do so by alternating

between computing the rank 1 basis matrices Mi and the weights θ accordingly. In particular,

on the (k−1)th step, suppose we have computed M1, . . . ,Mk−1 and weights θk−1. To compute

Mk, we first compute the regression residual

Rk = MΩ −
k−1∑
i=1

θiMi

Here we assume that MΩ is a partially known matrix with zeros in unknown indices.

Since it is desired that Mk is rank one with unit Frobenius norm, we may search for Mk

in the form Mk = uv> for some unit vectors u and v. We then calculate u and v as the

solution to

max
u,v
{u>Rkv | ‖u‖ = ‖v‖ = 1}.

Here the unknown entries of Rk are replaced with 0. This minimization has optimal solution

equal to the first left and right singular vectors of Rk. After we have computed Mk = uv>,

we then calculate θk as the solution to the minimization problem

min
θ

∥∥∥∥∥
k∑
i=1

θiPΩ(Mi)−MΩ

∥∥∥∥∥
which can be computed with least squares. In particular, let mΩ = vec(MΩ), and mi =

vec(Mi) be the vectorization of MΩ and PΩ(Mi) respectively. Let Wk = [m1 · · ·mk] be the

11



vectors mi assembled into a matrix for i = 1, . . . , k. Then

θk = (W>
k Wk)

−1W>
k mΩ

is the solution to the minimization problem.

In summary, the algorithm runs as follows.

Algorithm 3: Orthogonal Rank-One Matrix Pursuit [17]

Input : incomplete matrix MΩ, initial guess X0, stopping criterion
Initialize: mΩ = vec(MΩ)
Result: Xk an approximation of M such that rank(M) = r and PΩ(M) = MΩ

for k = 1, . . . do
Rk = MΩ −Xk−1;
Find the top left- and right-singular vectors uk and vk of Rk;
Mk = ukv

>
k , mk = vec(Mk), and Wk = [m1 · · ·mk];

θk = (W>
k Wk)

−1W>
k mΩ;

Xk =
∑k

i=1 θ
k
iMi;

The orthogonal rank-one matrix pursuit algorithm converges at a linear rate.

2.4 Convex Relaxation

In general, the problem of finding a minimum rank completion of MΩ is difficult because the

rank function is non-convex. Moreover, the space of matrices with rank at most r, Mr, is

low-dimensional, while real life data often has random noise. If we assume that the random

noise is sampled from a continuous distribution, then the probability that the data with

noise will belong to Mr is zero.

Instead of solving minX rank(X) such that Xij = Mij for (i, j) ∈ Ω, we may opt to solve

a convex relaxation of the problem by replacing the rank function with the nuclear norm. In

other words, we opt to solve the convex minimization minX ‖X‖∗ such that Xij = Mij for

(i, j) ∈ Ω. The nuclear norm ‖·‖∗ is defined as the sum of the singular values of the matrix.
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That is, if σ(X) is the vector of singular values of X and σi(X) are the singular values, we

have

‖X‖∗ =
∑
i

σi(X).

This convex relaxation is analogous to the l1 convex relaxation of the l0 norm. In fact

they are directly related, as we have

rank(X) = ‖σ(X)‖0

‖X‖∗ = ‖σ(X)‖1 .

To understand why we choose this relaxation, we introduce the definition of the convex

envelope of a function.

Definition 1. Given a convex domain C, the convex envelope of a function f : C → R is

the largest convex function g such that g(x) ≤ f(x).

The reason why the l1 norm is used as a convex relaxation of the l0 norm is because it is

the convex envelope of the l0 norm on the unit ball. Similarly, the nuclear norm is the convex

envelope of the rank function on the unit ball with respect to the spectral norm. That is,

on the domain {X | σ1(X) ≤ 1}.

Theorem 1. On the unit ball B = {X | σ1(X) ≤ 1}, the convex envelope of the rank

function is the nuclear norm function ‖·‖∗.

Proof. First, recall that any norm is a convex function, so the nuclear norm is convex. For

X ∈ B, we have σ1(X) ≤ 1. Since σ1(X) is the largest singular value of X, we have

σi(X) ≤ 1 for all i. Let r = rank(X). Then r is the number of non-zero singular values of

X. Therefore, we have

‖X‖∗ =
r∑
i=1

σi(X) ≤
r∑
i=1

1 = r,
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so ‖X‖∗ ≤ rank(X) on B. Moreover, it is shown in [23] that the nuclear norm is the tightest

convex lower bound.

The matrix completion problem may then be approximated as the nuclear norm mini-

mization problem

min
X
‖X‖∗ (1)

s.t. PΩ(X) = MΩ.

2.5 Singular Value Thresholding

The notes in this section are on [19]. Singular value thresholding is an algorithm for approx-

imately solving the previous convex minimization of the nuclear norm. In particular, instead

of minimizing the nuclear norm, we solve the minimization

min
X

τ ‖X‖∗ +
1

2
‖X‖2

F (2)

s.t. PΩ(X) = MΩ

This minimization is easier to solve than minimizing the nuclear norm. Moreover, for large

values of τ , the term τ ‖X‖∗ dominates the term 1
2
‖X‖2

F , and so the solution is approximately

equal to the solution to minimizing the nuclear norm with the same constraints.

We start with defining the singular value shrinkage operator Dτ . Let X = UΣV ∗ be the

singular value decomposition of X. Let Στ be the diagonal matrix with ith diagonal entry

equal to max(σi − τ, 0). Then for τ ≥ 0, the singular value shrinkage operator Dτ is defined

as Dτ (X) = UΣτV
∗.

14



Theorem 2. For τ ≥ 0, the singular value shrinkage operator satisfies the minimization

Dτ (Y ) = arg min
X

{1

2
‖X − Y ‖2

F + τ ‖X‖∗}

Now in terms of the shrinkage operator, we define the singular value thresholding algo-

rithm.

Algorithm 4: Singular Value Thresholding [19]

Input: incomplete matrix MΩ, sequence of step sizes {δk}k≥1, τ ≥ 0, initial guess
Y0, stopping criterion

Result: Xk an approximation of M such that rank(M) = r and PΩ(M) = MΩ

for k = 1, . . . do
Xk = Dτ (Yk−1);
Yk = Yk−1 + δk(MΩ − PΩ(Xk)) ;

It can be shown that the sequence Xk converges to the solution to eq. (2), and for large

values of τ , Xk approximates the solution to eq. (1). Moreover, the matrices in the sequence

{Xk} empirically have low rank.

2.6 Mask Permutations

Given an n × m partially known matrix MΩ, it may be useful to permute the rows and

columns or take the transpose to simplify the structure of the known and unknown entries.

This does not change the number of rank r completions of MΩ because row permutations,

column permutations, and transposes are bijections under which the rank is invariant. More

specifically, if Q is a composition of transposes, row permutations, and column permutations,

and M is a rank r completion of MΩ, then Q(M) is a rank r completion of the partially

known matrix MQ(Ω) = Q(MΩ).

Two masks Ω1 and Ω2, interpreted as binary matrices, are considered equivalent if we

may obtain Ω1 from Ω2 by permuting rows and columns or transposing. How can we tell if

two masks are equivalent? An initial attempt may be to count the number of ones in the

15



rows and columns of Ω1 and Ω2. If Ω1 and Ω2 are equivalent, the number of ones in the

rows and columns of Ω1 and Ω2 must be equal up to order. This is a necessary, but not a

sufficient, condition for two masks to be equivalent. For example, consider the masks

Ω1 =


1 0 0

0 1 1

0 1 1

 Ω2 =


0 0 1

0 1 1

1 1 0

 .

The number of ones in the rows and columns are both (1, 2, 2) for both Ω1 and Ω2, so

they may or may not be equivalent. However, note is that that Ω1 has a non-trivial stabilizer

under the action of S3 × S3 by permutation of rows and columns since swapping rows or

columns 2 and 3 does not change Ω1. On the other hand, Ω2 is not fixed by swapping any

two rows or columns, so it has a trivial stabilizer. Therefore, Ω1 and Ω2 are not equivalent.

In general, there are many masks up to permutation of rows and columns.

Theorem 3. The number of n×m masks up to permutation of rows and columns is at least

2nm

n!m!
.

Proof. Let Bn×m be the set of n × m masks, then |Bn×m| = 2nm. Since row and column

permutations commute, there is a group action of G = Sn × Sm on Bn×m, where Sn is the

symmetric group over n symbols. Then |Bn×m/G| is the number of masks up to permutation

of rows and columns.

By the orbit-counting theorem from [20], we have

|Bn×m/G| =
1

|G|
∑

Ω∈Bn×m

|StabG(Ω)| ,
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where StabG(Ω) is the stabilizer of Ω. Since each matrix is fixed by the identity permutation,

we have |StabG(Ω)| ≥ 1, and so

|Bn×m/G| ≥
1

|G|
∑

Ω∈Bn×m

1 =
|Bn×m|
|G|

=
2nm

n!m!
.

2.7 Finite Completability

We call a partially known matrix MΩ finitely completable in rank r if there are finitely many

rank r completions of MΩ. In this section, we discuss some necessary conditions for an

incomplete matrix MΩ to have a unique rank r completion.

Theorem 4. Having at least r known entries per row and r known entries per column is a

necessary condition for an n×m partially known matrix MΩ to be finitely completable in r.

Proof. Let Ω be a set of known indices such that there is a row or column with fewer than r

known entries. By transpose and permutation, suppose the last column of MΩ has k known

entries which is strictly fewer than r. Without loss of generality, assume the first m − 1

columns are entirely known. Again by permuting the rows, let MΩ = [ A C
B � ], where A and B

are completely known, C is a k×1 block of known entries with k < r, and � is an (n−k)×1

block of unknown entries. It suffices to show that MΩ is not finitely completable in rank r.

First note that if rank([ AB ]) > r, then any completion of MΩ will have rank greater than

r, so there will be no completions of MΩ inMr. If rank([ AB ]) < r, then any completion of MΩ

will have rank less than or equal to r, so MΩ would have infinitely many rank r completions.

We are left with the case rank([ AB ]) = r. Let s = rank(A). Note that s ≤ k since A is

a k × (n− 1) matrix. Suppose C is not in the column space of A. In other words, suppose

rank([ A C ]) = s + 1. Then any completion M ∈ AΩ will have rank r + 1, and so there will

17

Ming-jun Lai
Sticky Note
Please add an example to show that the permutation can be useful for matrix completion.  

Ming-jun Lai
Sticky Note
in r should be in M_r. 



be no completion of MΩ in Mr. So C must be in the column space of A. In other words,

rank([ A C ]) = s.

Since rank([ AB ]) = r, there exists an r× (m− 1) rank r submatrix
[
A′

B′

]
. We may choose

A′ such that it consists of s linearly independent rows of A. Then, since the remaining rows

of A are in the row space of A′, we must choose the remaining r − s linearly independent

rows B′ from B.

Augmenting
[
A′

B′

]
with the corresponding rows from [ C� ], we get an r × m submatrix

of MΩ of the form M ′
Ω =

[
A′ C′

B′ �

]
, where � is an (r − s) × 1 block of unknown entries.

Any completion M ′ =
[
A′ C′

B′ D′

]
of M ′

Ω will be rank r because the submatrix
[
A′

B′

]
is rank r.

Moreover, there are r − s degrees of freedom, which is greater than zero since r > k ≥ s.

Let B =
[
B′

B′′

]
, where B′′ is the (n − k − r + s) × (m − 1) submatrix of B consisting

of the rows in B that are not in B′. Similarly, let D = [D
′

� ], where � are the remaining

(n − k − r + s) unknown entries of MΩ. Because the rows of
[
A′

B′

]
form a basis for the row

space of [ AB ], there exists a unique r× (n− k− r+ s) matrix X such that
[
A′

B′

]>
X = [ B′′ ]>.

In particular, X =
[
A′(A′)> A′(B′)>

B′(A′)> B′(B′>)

]−1[
A′(B′′)>

B′(B′′)>

]
. So we must have

[
A′ C′

B′ D′

]>
X = [ B′′ � ]>,

which implies the remaining unknown entries are equal to
[
C′

D′

]>
X. So there exists a unique

D such that rank([ A
′ C′
B D ]) = r.

Moreover, since the rank of a matrix is at least as great as the rank of any submatrix,

we have

s = rank(A′) ≤ rank([ A′ C′ ]) ≤ rank([ A C ]) = s.

So rank([ A′ C′ ]) = s, which implies that the rows of [ A′ C′ ] span the row space of [ A C ].

Therefore rank([ A C
B D ]) = rank([ A

′ C′
B D ]) = r.

Thus any completion M ′ =
[
A′ C′

B′ D′

]
of M ′

Ω extends to a unique rank r completion M =

[ A C
B D ] of MΩ. So dim(AΩ ∩ Mr) = r − s > 0, and so MΩ has infinitely many rank r

completions.

This exhausts all possible cases of MΩ, so MΩ is not finitely completable in r.
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We also observe that a sufficient total number of observed entries are required for MΩ to

be finitely completable in r.

Theorem 5. For n×m matrices, Ω must contain at least (n+m)r − r2 known entries for

MΩ to be finitely completable.

Proof. From [2], if U and V are irreducible affine varieties in d dimensional space, then we

have the inequality dim(U) + dim(V ) ≤ dim(U ∩ V ) + d.

Note that dim(Mr) = (n + m)r − r2, dim(AΩ) = nm − |Ω|, and dim(Mn×m) = nm

Suppose MΩ is finitely completable in r, then dim(Mr ∩ AΩ) = 0. Applying the inequality,

we must have (n+m)r − r2 + nm− |Ω| ≤ nm, which implies |Ω| ≥ (n+m)r − r2.

Given MΩ, it may not be known which rank r we should choose to complete MΩ. If we

choose r too small, then AΩ ∩Mr will be empty, and if we choose r too large, then MΩ will

have infinitely many completions. We introduce a method of deciding such a rank r.

Suppose we are given Ω, but we do not know r. Let p = |Ω|. Then if MΩ is finitely

completable in r, We must have p ≥ (n+m)r − r2 from theorem 5. This implies

r ≤
n+m−

√
(n+m)2 − 4p

2
.

So a good guess for a rank r may be r = bn+m−
√

(n+m)2−4p

2
c.

It is useful to define the function ΦΩ : Mr → Mn×m as the restriction of PΩ to Mr.

In other words, ΦΩ(X) is the projection of a matrix X ∈ Mr obtained by setting entries

with indices not in Ω equal to zero. Then given a partially known matrix MΩ, we have

Φ−1
Ω (MΩ) = AΩ ∩Mr, that is, Φ−1

Ω (MΩ) is the space of rank at most r completions of MΩ.

We now focus on the set of matrices X such that given Ω, the preimage Φ−1
Ω (ΦΩ(X)) is a

zero dimensional set. In other words, the set of X ∈Mr such that ΦΩ(X) has finitely many
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rank r completions. We define such a set χΩ ⊂Mr as

χΩ =
{
X ∈Mr | Φ−1

Ω (ΦΩ(X)) is zero dimensional
}
.

Theorem 6. For any X ∈ χΩ, rank(X) = r. That is, χΩ ⊂Mr.

Proof. Without loss of generality by permuting rows and columns, suppose the index (1, 1) /∈

Ω. Consider X ∈ χΩ such that

X =


x11 x12 · · ·

x21 x22 · · ·
...

...
. . .


Suppose rank(X) < r. Then

Y (t) =


t x12 · · ·

x21 x22 · · ·
...

...
. . .


has rank at most r, so Y (t) ∈Mr for any t. Moreover, since ΦΩ(X) = ΦΩ(Y (t)), then Y (t) ∈

Φ−1
Ω (ΦΩ(X)) for any t. However, this implies that dim(Φ−1

Ω (ΦΩ(X))) > 0, contradicting the

assumption that X ∈ χΩ. Therefore, we must have rank(X) = r.

To estimate the number of ways to complete a matrix, we introduce the degree of a

variety.

Definition 2. The degree of an affine or projective variety of dimension k is the number of

intersection points of the variety with k hyperplanes in general position.

For example, the degree of the algebraic variety Mr is known [26].

Theorem 7. The degree of the algebraic variety Mr is

Vn,m,r :=
m−r−1∏
i=0

(
n+i

m−1−i

)(
n−r+i
m−r−i

)
20



Recall a generalized version of Bézout’s Theorem [1].

Theorem 8. Let U1, . . . , Uk be irreducible algebraic varieties, and let Z1, . . . , ZN be the

irreducible components of U1 ∩ · · · ∩ Uk. Then

N∑
i=1

deg(Zi) ≤
k∏
j=1

deg(Uj).

Now we are ready to present an upper bound on the number of possible rank r completions

of MΩ.

Theorem 9. Given a partially known n×m matrix MΩ, let N =
∣∣AΩ ∩Mr

∣∣ be the number

of rank at most r completions of MΩ. If N <∞, then N < Vn,m,r.

Proof. Given MΩ, recall that AΩ = {X ∈ Mn×m | PΩ(X) = MΩ} is the algebraic variety of

any possible completion of MΩ. Note that AΩ is a linear variety, and so it is irreducible and

deg(AΩ) = 1.

Now suppose there are finitely many points Z1, . . . , ZN ∈ AΩ ∩Mr. That is, there are

N possible rank r completions of MΩ. Since deg(Zi) = 1 for all i, and both AΩ andMr are

irreducible, then by theorem 7 and theorem 8 we have

N =
N∑
i=1

deg(Zi) ≤ deg(AΩ) deg(Mr) = Vn,m,r.

The number Vn,m,r is very large, and in general is larger than the exact number of

rank at most r completions. One reason for this may be that given MΩ, the hyperplanes

Hij = {X ∈ Mn×m | Xij = Mij} such that ∩(i,j)∈ΩHij = AΩ may not be in general position.

In addition, some intersection points may be at infinity, or the intersection points may have

multiplicity.
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It is often desirable to have a unique rank r completion rather than finitely many. If Ω

has the right structure, then a generic X ∈ Mr will be the unique rank r completion of

ΦΩ(X). We introduce the following definition.

Definition 3. We say a mask Ω is uniquely completable in r if, for a generic X ∈Mr, X

is the unique rank r completion of ΦΩ(X).

We will give a class of such Ω. First we introduce the following definition and theorem

for motivation.

Definition 4. We say a mask Ω is completable entry by entry in r if we may find an

(r + 1) × (r + 1) submatrix of Ω with exactly one entry equal to 0, replace that 0 with a 1,

and repeat until all entries are equal to 1.

Theorem 10. If a mask Ω is completable entry by entry in r, then it is uniquely completable

in r.

To prove theorem 10, will define the entry by entry matrix completion algorithm 5.

Algorithm 5: Complete Entry by Entry

Input : mask Ω0, partially known matrix MΩ0 , rank r
Result: mask Ωk such that |Ωk| ≥ |Ω0|, partially known matrix MΩk such that

Φ−1
Ωk

(MΩk) = Φ−1
Ω0

(MΩ0);

for k = 0, 1, . . . do
search for an (r + 1)× (r + 1) submatrix of MΩk of the form

[
Ak bk
ck xk

]
where xk is

the only unknown element, Ak is r × r and nonsingular;
if no such submatrix exists then

output Ωk and MΩk ;

else
set (ik, jk) equal to the index of xk in MΩk ;
take the cofactor expansion of Mk along row r + 1, getting an expression of
the form det(Ak)xk − ak for some known constant ak;

set Ωk+1 = Ωk ∪ {(ik, jk)};
set MΩk+1

equal to MΩk with the entry in index (ik, jk) equal to ak
det(Ak)

;

We will also introduce the following lemma.
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Lemma 1. The set of matrices M ∈ Mr that have at least one vanishing r × r minor has

dimension strictly smaller than dim(Mr).

Proof. Given I ⊂ [n], J ⊂ [m], such that |I| = |J | = r, let VI,J = {X ∈Mn×m | det(XI,J) =

0}, where XI,J is the r × r submatrix submatrix of X with indices in I × J . Let

V =
⋃
I,J

VI,J

be the set of n × m matrices with at least one vanishing r × r minor. Then because V is

a finite union of sets of the form VI,J , it suffices to show that dim(Mr ∩ VI,J) < dim(Mr).

Note that VI,J is an algebraic hypersurface which does not contain Mr.

**finish this**

We will now prove theorem 10.

Proof. Given a mask Ω, suppose Ω is completable entry by entry in r. Then given M ∈Mr,

input MΩ = PΩ(M) into algorithm 5. At each step we may always find a submatirx with

exactly one unknown entry because Ω is completable entry by entry in r. The only way

algorithm 5 may output a matrix that is not fully completed is if there is at least one r × r

singular submatrix in M . However, the set of matrices with a singular r × r submatrix has

measure zero in Mr, so algorithm 5 will output a fully completed matrix X for a generic

M ∈ Mr. Moreover, since M satisfies the equations used to complete MΩ, each of which

had a unique solution, we must have X = M .

More generally, given any mask Ω and any M ∈ Mr, let MΩ′ be the output of algo-

rithm 5 with input MΩ = PΩ(M). Then all entries which are completed will be equal to the

corresponding entry in M . Again, this is because each equation used to complete MΩ had a

unique solution, and M satisfies those equations. So the completed entries must be the same

for every rank at most r completion X ∈ Φ−1
Ω (MΩ), and because algorithm 5 only completed
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entries which had unique completions, the space of possible rank at most r completions of

MΩ′ and MΩ must be equal. That is, we have Φ−1
Ω′ (MΩ′) = Φ−1

Ω (MΩ).

Example 2.1. A special class of partially known matrices which is are completable entry by

entry are matrices of the form MΩ = [ A B
C � ] where A is r×r and nonsingular, B is r×(m−r),

C is (n− r)× r, and A, B, and C consist of the known entries of MΩ. In fact, MΩ may be

completed all at once to the unique rank r completion M =
[
A B
C CA−1B

]
. Note that MΩ has

(n+m)r− r2 known entries, which is the minimum number of known entries such that MΩ

may have a unique completion by theorem 5.

2.8 Algebraic Combinatorics of Low-Rank Matrix Completion

The notes in this section are on [24]. Recall that a mask Ω ⊂ [n]×[m], where [n] = {1, . . . , n}.

We define G(Ω) as the bipartite graph with vertices equal to the disjoint union of [n] and

[m], and an edge between i ∈ [n] and j ∈ [m] if (i, j) ∈ Ω. Moreover, the adjacency matrix

of our graph is equal to the binary matrix interpretation of Ω.

Example 2.2. The mask

Ω1 =


1 1 1

1 0 0

1 0 0

 ,
Corresponds to the bipartite graph fig. 4.

Example 2.3. The mask

Ω2 =


1 0 0

0 1 1

0 1 0

 ,
Corresponds to the bipartite graph fig. 5.
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Figure 4: Bipartite graph G(Ω1)
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Figure 5: Bipartite graph G(Ω2)
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We will address the question of whether or not the unknown entry (i, j) ∈ Ωc is uniquely

or finitely completable. In other words, given an unknown entry � in MΩ in position (i, j),

are there only finitely many values that we could fill in for � such that there still exists a rank

r completion of the resulting matrix? In general, for any continuous method of sampling,

the question of whether or not the unknown entry � is uniquely completable depends only

on the positions of the known entries in MΩ with probability one.

To answer the question of which entries have finitely many completions as part of a rank

r matrix in further generality, we will introduce the following definition.

Definition 5. Given a set of observed indices Ω and a rank r, we start by defining the rank

r finitely completable closure clr(Ω) as the set of positions which are finitely completable in

Ω for a generic matrix M ∈Mr.

In order to classify clr(Ω), we introduce the following tools. We define the algebraic

matrix multiplication map Υ : Mm,r×Mn,r →Mm,n by Υ : (U, V ) 7→ UV >. Note that every

matrix in the image of this map has rank at most r. Moreover,Mr is the image of the map

Υ. Next, we calculate the Jacobian J of Υ. At point (U, V ), the Jacobian has the following

representation as an mn×r(m+n) matrix in terms of the Kronecker product ⊗ and identity

matrices Im and In.

J(U, V ) =


Im ⊗ v>1

... In ⊗ U

Im ⊗ v>n


Note that each row in J(U, V ) corresponds to some matrix entry (i, j). In particular, for an

observed position (i, j), the row J(i,j) is defined to be the row of J corresponding to position

(i, j). For a collection of known indices Ω, the matrix JΩ is defined to be the submatrix of

J with rows corresponding to the known indices in Ω. We may use this definition to classify

clr(Ω).
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Theorem 11. Given a set of known indices Ω and a rank r, we have the following classifi-

cation of clr(Ω), the rank r finitely completable closure for generic partially known matrices

MΩ.

clr(Ω) = {(i, j) | J(i,j) is in the rowspan of JΩ}

Here the linear independence of the rows of JΩ is a generic property, and so it does not

depend on the choice of generic MΩ. Using this theorem, we may compute whether or not

index (i, j) is generically finitely completable in Ω with the following algorithm.

1. Sample U and V from a continuous distribution. This will ensure that they are generic

with probability 1.

2. Calculate the Jacobian JΩ(U, V ).

3. Test whether or not J(i,j)(U, V ) is in the row-span of JΩ(U, V ). If it is, then index (i, j)

is finitely completable. If not, then it is not finitely completable.

Example 2.4. For a simple example, consider the case U = [ 2
3 ] and V = [ 1

5 ]. Then

UV > = [ 2 10
3 15 ], and

J(U, V ) =



1 0 2 0

0 1 3 0

5 0 0 2

0 5 0 3


.
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In this case we have,

J(1,1) =

[
1 0 2 0

]
J(2,1) =

[
0 1 3 0

]
J(1,2) =

[
5 0 0 2

]
J(2,2) =

[
0 5 0 3

]
.

Now let Ω = {(1, 1), (2, 1), (1, 2)}. Then we have MΩ = [ 2 10
3 � ] and

JΩ =


1 0 2 0

0 1 3 0

5 0 0 2


If we assume that U and V are generic, then in order to check if the entry (2, 2) is finitely

completable, we need to check if J(2,2) is in the rowspan of JΩ. In this case it is, since

3
2
J(1,2) +5J(2,1)− 15

2
J(1,1) = J(2,2). Since U and V are generic, cl1(Ω) = Ω∪{(2, 2)}. However,

if U and V are not generic, then the point (2, 2) may not be uniquely completable. As a

counterexample, consider the same Ω with U = [ 0
3 ] and V = [ 0

5 ] Then UV > = [ 0 0
0 15 ], and

MΩ = [ 0 0
0 � ]. Clearly we can fill in � with any number and the result will be at most a rank

one matrix. To check this in terms of the Jacobian, we have
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J(U, V ) =



0 0 0 0

0 0 3 0

5 0 0 0

0 5 0 3



JΩ =


0 0 0 0

0 0 3 0

5 0 0 0


In this case J(2,2) is not in the rowspace of JΩ, and so the entry (2, 2) is not finitely completable

in MΩ. However, U and V are not generic, and so this does not contradict the statement

that clr(Ω) is independent of MΩ for generic matrices.

To address the question of whether or not finite completability implies unique com-

pletability over complex numbers, we start with the following definition.

Definition 6. Similarly to the rank r finitely completable closure clr(Ω), we define the rank

r uniquely completable closure uclr(Ω) as the set of positions which are uniquely completable

in Ω for a generic matrix M ∈Mr.

In order to characterize the uniquely completable closure uclr(Ω), we will introduce the

following.

Definition 7. Given U ∈ Mm×r(C) and V ∈ Mn×r(C), a rank r stress of M = UV > is a

matrix S ∈ Mm×n(C) that, as a vector, is in the kernel of the transpose of the Jacobian of

U and V . That is, we have

J(U, V )> vec(S) = 0
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Given Ω the index set of the known entries, we define the Ω-stresses as the stresses S such

that Sij = 0 for all entries in unknown positions, that is, for all (i, j) ∈ Ωc. Note that if we

vectorize S and remove the zeros corresponding to unknown entries, then the Ω-stresses are

in the kernel of the submatrix JΩ(U, V )>. Also note that the rank r Ω-stresses of M = UV >

form a complex vector space, which will be denoted ΨM(Ω).

Finally, the maximal Ω-stress rank of M in rank r is defined as

ρM(Ω) = max
S∈ΨM (Ω)

rank(S)

In general, if M is generic, then the maximal stress rank ρM(Ω) depends only on Ω and

r and not on M . In this case, we will denote the generic Ω-stress rank as ρ(Ω). These

definitions are used to formulate the following theorem that gives conditions for which finite

completability implies unique completability.

Theorem 12. Given an index set of known entries Ω, if the generic Ω-stress rank in r

satisfies the inequality ρ(Ω) ≥ min(m,n)− r, then for generic MΩ, the finite completability

of an entry in index (i, j) implies that the entry (i, j) is uniquely completable. That is

clr(Ω) = uclr(Ω).

The above theorem gives sufficient conditions for unique completability of all finitely com-

pletable entries, but determining whether finite completability implies unique completability

relies on calculating the generic Ω-stress in rank r, ρ(Ω), which can be done by using the

following algorithm.

1. Sample U ∈ Mm×r(C) and V ∈ Mn×r(C) from a continuous distribution. This will

ensure that they are generic with probability 1.

2. Calculate JΩ(U, V ).
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3. Sample a random vector vec(S) in the kernel of JΩ(U, V )> from a continuous distribu-

tion, this will again ensure genericness with probability 1. Reshape vec(S) as a matrix

S with entries in Ω corresponding to entries in vec(S), and entries in Ωc as zeros.

4. Output ρ(Ω) = rank(S)

2.9 Zero Sets of Systems of Matrix Minors

In this section we will introduce a decomposition of the zero set of a system of minors which

will be useful later on. We first start with a lemma.

Lemma 2. Consider the space M(r+1)×n of all (r+ 1)×n matrices. Let V be the zero set of

all (r+1)×(r+1) minors containing the first k columns with k ≤ r+1. Then V =Mr∪W ,

where W = {M ∈ M(r+1)×n | the rank of the first k columns of M is < k}, where Mr is

the space of (r + 1)× n matrices with rank ≤ r.

Proof. Note that Mr ⊂ V since the set of equations which define Mr contains the set of

equations which define V . Also, W ⊂ V , since if M ∈ W , then the first k columns of M are

linearly dependent, so every (r+ 1)× (r+ 1) minor containing the first k columns vanishes,

so M ∈ V . Therefore, Mr ∪W ⊂ V .

For the opposite inclusion, we will induct on n, the number of columns in Mr+1×n and

backwards induction on k. Consider n = r + 1. Then there is exactly one (r + 1)× (r + 1)

minor. Note that in this case for all k ≤ r, W ⊂ Mr, and so V =Mr =Mr ∪W . Fix n.

For the case k = r + 1, both V and W are the zero set of the first (r + 1)× (r + 1) minor.

In this case V = W , and Mr ⊂ W . Therefore, V = W =Mr ∪W .

Now by induction we will assume that V = Mr ∪ W for all k for (r + 1) × (n − 1)

matrices, and that V =Mr ∪W for the first k + 1 columns. Let M ∈ V . If rank(M) ≤ r,

then M ∈Mr. Suppose rank(M) = r+ 1. Consider the submatrix M ′ obtained by deleting

the (k + 1)st column. Then since M ∈ V , then by our inductive hypothesis on n we have
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that the first k columns of M ′ are linearly dependent , or rank(M ′) ≤ r. In the first case,

we have that M ∈ W , so suppose rank(M ′) ≤ r. Then since rank(M) = r + 1, we have

that rank(M ′) = r, and the k + 1st column of M is linearly independent from the rest of

the columns. In particular, it is linearly independent from the first k columns. Now note

that M is in the zero set of all (r + 1) × (r + 1) minors containing the first k + 1 columns.

By backwards induction on k, M ∈ Mr, or the first k + 1 columns are linearly dependent.

However, M /∈ Mr, so the first k + 1 columns must be linearly independent. We also have

that the k+1st column is linearly independent from the first k columns. Therefore, the first k

columns are linearly dependent, so M ∈ W . Therefore, M ∈Mr ∪W , and so V ⊂Mr ∪W .

So V =Mr ∪W .

We shall use the above lemma to prove the following:

Theorem 13. Let A be the top-left k × k submatrix with variables in Mm×n and k ≤ r.

Consider the variety V which is the zero set of all (r+ 1)× (r+ 1) minors which contain A.

Then V =Mr ∪W , for some W such that for all M ∈ W , the first k × k block of M is not

invertible.

Proof. We will induct on m. For the base case, let m = r + 1. Consider some M ∈ V , and

suppose rank(A) = k. Then by lemma 2, we have that rank(M) ≤ r or the rank of the first

k columns is less than k. However, since rank(A) = k, the first k columns have rank k, and

so we have rank(M) ≤ r, so M ∈Mr.

Now by induction we will assume that V =Mr ∪W for (m− 1)× n matrices. Consider

an m× n M ∈ V , and suppose rank(A) = k. Then we will show that M ∈Mr.

Consider the submatrix M ′ which consists of the first m − 1 rows of M . Now by the

inductive hypothesis, since rank(A) = k, we must have that rank(M ′) ≤ r. If rank(M ′) < r,

then by adding in the last row we will have rank(M) ≤ r, which means that M ∈ Mr. So

suppose rank(M ′) = r. Since rank(A) = k, then the first k rows are linearly independent. So
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without loss of generality by permuting the rows, suppose that the first r rows are linearly

independent and span the row space of M ′. Now consider the submatrix M ′′ of M which

consists of all but the second to last row. Then again by the inductive hypothesis and since

rank(A) = k, we must have that rank(M ′′) ≤ r. However, since the first r rows of M ′′ span

the row space, we have that the last row of M is contained in the span of the first r rows.

Therefore, since rank(M ′) = r, and since the last row of M is contained in the row space of

M ′ we must have rank(M) = r, so M ∈Mr.

2.10 Matrix Completion Topology

In this section we will discuss the topology of the spacesMr and AΩ and how they intersect.

For a topological space X, let Hi(X) be the ith homology group of X. Also let hi(X) be

ith Betti number, which is equal to the dimension of the group Hi(X). In particular, h0(X)

is equal to the number of connected components of X, so if X is a finite number of points,

then h0(X) is equal to that number of points. Moreover, h1(X) is equal to the number of

cycles in X. Intuitively speaking, a cycle is a non-trivial loop in the topological space X.

First, we will introduce the Mayer-Vietoris sequence from algebraic topology.

Theorem 14. [3] Let U and V be two topological spaces whose interiors cover U ∪V . Then

there exists a long exact sequence of the form

. . . Hn+1(U ∪ V )

Hn(U ∩ V ) Hn(U)⊕Hn(V ) Hn(U ∪ V )

Hn−1(U ∩ V ) . . . H1(U ∪ V )

H0(U ∩ V ) H0(U)⊕H0(V ) H0(U ∪ V ) 0

which is

called the Mayer-Vietoris sequence.

Using this sequence, we obtain the following theorem on the relationship between h0(Mr∩
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AΩ) and h1(Mr ∪ AΩ).

Theorem 15. h0(Mr ∩ AΩ) = h1(Mr ∪ AΩ) + 1. In particular, h0(Mr ∩ AΩ) is equal to

the number of connected components of Mr ∩AΩ, so if dim(Mr ∩AΩ) = 0, that implies that

there is some finite number of points N such that N =
∣∣Mr ∩ AΩ

∣∣ = h1(Mr ∪ AΩ) + 1.

Proof. Let us assume Mr ∩ AΩ 6= ∅. By Mayer-Vietoris, we have the long exact sequence

· · · H1(Mr)⊕H1(AΩ) H1(Mr ∪ AΩ)

H0(Mr ∩ AΩ) H0(Mr)⊕H0(AΩ) H0(Mr ∪ AΩ) 0

Note thatMr is homotopy equivalent to a point. Since scaling does not change the rank

of a matrix, Mr deformation retracts to {0} from the map f : Mr × [0, 1] → {0}, where

f(M, t) = (1 − t)M . Similarly, since AΩ is an affine-plane, it also deformation retracts to

a point, so both Mr and AΩ have trivial homology. Moreover, since Mr and AΩ are both

connected and have non-empty intersection, then their union is also connected. Therefore,

our long exact sequence simplifies to:

0 H1(Mr ∪ AΩ) H0(Mr ∩ AΩ) Z2 Z 0

It is a fact that if we have a long exact sequence with zeros on the ends, then the

alternating sum of the dimensions is equal to zero, so we have h1(Mr ∪ AΩ) − h0(Mr ∩

AΩ) + 2− 1 = 0, which implies h0(Mr ∩ AΩ) = h1(Mr ∪ AΩ) + 1.

Example 2.5. For visual intuition on theorem 15, consider the case where there are two

intersection points betweenMr and AΩ. That is, h0(Mr∩AΩ) = 2. Then we have h1(Mr∪

AΩ) = 1, meaning that there is one cycle on Mr ∪ AΩ.
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AΩ

Mr

•

•

AΩ ∩Mr

Two points in AΩ ∩Mr

One cycle in AΩ ∪Mr

Note that if the number of rank r completions is finite, that is if Mr ∩ AΩ is a finite

number of points, then h0(Mr ∩ AΩ) is equal to that number of points. This means that

if it is possible to calculate H1(Mr ∪ AΩ), then we can find the number of points in the

intersection Mr ∩ AΩ. One strategy is to calculate the fundamental group π1(Mr ∪ AΩ),

since its abelianization is equal to H1(Mr ∪ AΩ).

We have the following theorems in terms of the Euler characteristic. Let χ(X) be the

Euler characteristic of a topological space of X.

Theorem 16. We have χ(Mr∩AΩ) = 2−χ(Mr∪AΩ). In particular, if dim(Mr ∪ AΩ) = 0,

let N be the number of points in Mr ∪ AΩ. Then we have N = 2− χ(Mr ∪ AΩ).

Proof. Since both Mr and AΩ are homotopy equivalent to a point, and the Euler charac-

teristic is invariant under homotopy, χ(Mr) = 1 and χ(AΩ) = 1 By the inclusion-exclusion

property of the Euler characteristic, χ(Mr ∩ AΩ) = χ(Mr) + χ(AΩ) − χ(Mr ∪ AΩ) =

2− χ(Mr ∪ AΩ)

In terms of the Euler characteristic of the manifold of rank r matrices Mr, we have the

following theorem.

Theorem 17. χ(Mr ∩AΩ) = 1 + χ(Mr)− χ(Mr ∪AΩ). Moreover, if dim(Mr ∪ AΩ) = 0,

let N be the number of points in Mr ∪ AΩ. Then N = 1 + χ(Mr)− χ(Mr ∪ AΩ).
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Proof. By the inclusion-exclusion principle of the Euler characteristic,

χ(Mr ∩ AΩ) = χ(AΩ) + χ(Mr)− χ(Mr ∪ AΩ).

Since AΩ, is homotopy equivalent to a point, χ(AΩ) = 1. Moreover, we have shown that

if dim(Mr ∪ AΩ) = 0, then every point in the intersection has rank equal to r. Therefore,

N = χ(Mr ∩ AΩ) = χ(Mr ∩ AΩ).

The Euler characteristic of the set of fixed rank r, n×m matrices, χ(Mr), is known [37].

In particular, if our base field is C, we have χ(Mr) = 0 for r ≥ 1 and χ(Mr) = 1 if r = 0.

If our base field is R, we have

χ(Mr) =


1 if r = 0

0 if r ≥ 2

(1+(−1)n−1)(1+(−1)m−1)
2

if r = 1

Note that since Mr and AΩ are not open subsets of Mr ∪ AΩ, we cannot directly use

Mayer-Vietoris. One approach is to instead consider thickened versions of Mr and AΩ. Let

U = {X | ∃M ∈Mr, ‖X −M‖ < ε}

V = {X | ∃M ∈ AΩ, ‖PΩ(X)− PΩ(M)‖ < δ}.

Then each of U and V are open sub-sets of U ∪ V , and so we may use Mayer-Vietoris.

Recall that if dim(Mr ∩ AΩ) = 0, then Mr ∩ AΩ must be a finite number of points by

theorem 9. So suppose Mr ∩ AΩ is finite with N points. Then we may choose both ε and

δ small enough so that the number of connected components of U ∩ V is equal to N , and

that U ∪ V is homotopy equivalent to Mr ∪ AΩ. So by identical arguments, we have that

h0(U ∩ V ) = h1(U ∪ V ) + 1 and χ(U ∩ V ) = 2− χ(U ∪ V ), which by homotopy equivalence,
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implies h0(Mr ∩ AΩ) = h1(Mr ∪ AΩ) + 1 and χ(Mr ∩ AΩ) = 2− χ(Mr ∪ AΩ).
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3 The Maximum Volume Principle and Maximum Vol-

ume Algorithms

In several matrix analysis problems, knowledge of a quality submatrix of a large matrix is

required. For example, when using the Schur complement SA = D − CA−1B, it is desirable

to choose a quality submatrix A. In particular, A should not be close to singular, so the

quality of A may be measured by the modulus of the determinant, or the volume. Finding

the largest volume submatrix is very difficult in general. However, we may instead opt to

search for locally maximal volume submatrices, otherwise known as dominant submatrices,

which are much easier to find.

3.1 Schur Complement

First, we will introduce the Schur complement of a matrix M with respect to a submatrix A.

Let M ∈ Mn×m. Without loss of generality by permutation of rows and columns, suppose

M has the structure M = [ A B
C D ] for some k×k nonsingular submatrix A, and corresponding

B, C, and D. Then the Schur complement of M with respect to A is defined as

SA = D − CA−1B.

The Schur complement has the useful formula called the Schur determinant identity.

Lemma 3. For any fixed, full rank, k × k submatrix A in M , we have

det(M) = det(A) det(SA).

Moreover, by taking the absolute value, we also have

vol(M) = vol(A) vol(SA).
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Proof. Note that A B

C D

 =

A 0

C I


I A−1B

0 D − CA−1B

 .
Taking the determinant we get the desired result.

We also have the following useful property of the Schur complement.

Lemma 4. For any fixed, nonsingular k× k submatrix A in M , we have that SA = 0 if and

only if M is rank k.

Proof. Suppose rank(M) = k. Then since A is a nonsingular k× k submatrix, rank(M) = k

if and only if the columns of [ AC ] form a basis for the columns space of M , if and only if there

exists a unique matrix X such that

A
C

X =

B
D

 .
Solving for X we must have X = A−1B. If and only if CA−1B = D, and SA = D−CA−1B =

0.

3.2 Then Skeleton Approximation

Given an n×m matrix M , after permutation of rows and columns, let M = [ A B
C D ] where A

is an r × r invertible submatrix. Then

Mr =

A
C

A−1

[
A B

]
=

A B

C CA−1B


is a rank r skeleton approximation with respect to A. Note that rank(Mr) = r. Moreover,

the row space is spanned by the first r rows, and the columns space is spanned by the first

r columns.
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In general, the error of this approximation to the original matrix is larger than the error

to the best rank r approximation obtained by the singular value decomposition. However,

the skeleton approximation has the benefit being parameterized by a rational function of the

actual entries of M . Moreover, we do not need to calculate a singular value decomposition

of M to calculate a skeleton approximation of M .

The infinity norm error of this approximation is minimized over all choices of k × k

submatrix A when vol(A) = |det(A)| is maximized. In particular, when A is chosen with

maximum volume we have the inequality from [21] that

‖M −Mr‖∞ ≤ (r + 1)σr+1(M).

Note that σr+1(M) is the error to the best rank r approximation in the spectral norm.

Now relating the skeleton approximation to the Schur complement, we have

M −Mr =

A B

C D

−
A B

C CA−1B

 =

0 0

0 D − CA−1B

 =

0 0

0 SA


This implies that

‖M −Mr‖∞ = ‖SA‖∞

In other words, the infinity norm of the error of our original matrix to the skeleton ap-

proximation is equal to the infinity norm of the Schur complement of M with respect to

A. We have the following theorem on how the choice of A affects the error of the skeleton

approximation.

Theorem 18. [21] The infinity norm of the Schur complement, ‖SA‖∞ = ‖D − CA−1B‖∞,

is minimized over all possible choices of submatrices A with corresponding B,C, and D when

vol(A) is maximized.
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We will denote a k×k submatrix of maximum volume over all choices of k×k submatrix

by A�. In general, finding A� is an NP-hard problem [22]. However, we may instead

search for a submatrix which is locally maximum in volume as opposed to globally. Such

submatrices are called dominant submatrices.

Definition 8. For an n× r matrix M , we call a submatrix A of M dominant if all entries

of MA−1 are no larger than 1 in modulus. Equivalently, A is dominant if ‖MA−1‖∞ = 1.

If M is n×m. For a general n×m matrix M , a submatrix A is dominant if it is dominant

in it’s respective rows and columns of M .

We refer to dominant submatrices of M by A�. We introduce the concept of a dominant

submatrix is because they are easier to search for that maximum volume submatrices, and

are not too far off in volume from the maximum volume submatrix.

For an equivalent definition of dominant submatrices for an n×r matrix M , a submatrix

A is dominant in M if we may not increase the volume of A by swapping a row in A with a

row in M . More generally for a n ×m matrix M , a submatrix A is dominant in M in we

may not increase the volume of M by swapping either two rows or two columns of M .

Analogous to the statement that global maximums are also local maximums, we have the

following theorem.

Theorem 19. A submatrix of maximum volume A� in M is always a dominant submatrix.

Proof. Let A� be a k × k submatrix of maximum volume over all k × k submatrices in

M , n × k. Suppose xij an element of MA−1 is larger than 1 in modulus. Let A′ be the

k × k submatrix of M obtained by swapping the ith row of M with the jth row of A. Then

since multiplication by an invertible matrix does not change the ratio of determinants of

submatrices, we have vol(A)
1

= vol(A′)
xij

which implies that vol(A′) = xij vol(A). However, this

is a contradiction, since xij > 1 implies vol(A′) > vol(A) when A is maximum volume.

41



One nice property of dominant submatrices is that the volume of a dominant submatrix

A� is not too far from the volume of a maximum volume submatrix A�.

Theorem 20. For any matrix M , we have

vol(A�) ≤ rr/2 vol(A�)

Proof. This proof is given in [21].

3.3 Maximum Volume Algorithms

We start with the standard maxvol algorithm described in [21] for finding a close to dominant

r × r submatrix of an n× r matrix M .

Algorithm 6: Maximal Volume Algorithm

Input: n× r matrix M , r × r nonsingular submatrix A0, tolerance ε > 0
Result: Al a close to dominant submatrix of M .
Let l = 0, B0 = MA−1

0 ;
Set bij equal to the largest in modulus entry of B0;
while |bij| > 1 + ε do

Replace the jth row of Al with the ith row of M ;
l := l + 1;
Let Bl = MA−1

l ;
Set bij equal to the largest in modulus entry of Bl;

The Maxvol algorithm gives up an increasing sequence of volumes of submatrices. In

other words, we have the following theorem.

Theorem 21. [21] The sequence {vl} = {vol(Al)} is increasing.

We may generalize this algorithm to find a r×r dominant submatrix of an n×m matrix M

by searching for the largest in modulus entry of both Bl = M(:, Jl)A
−1
l , and Cl = A−1

l M(Il, :)

at each step.
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Algorithm 7: 2D Maximal Volume Algorithm

Input: n×m matrix M , r × r nonsingular submatrix A0, tolerance ε > 0, l = 0,
bij =∞

Result: Al a close to dominant submatrix with indices (Il, Jl) in M .
while |bij| > 1 + ε do

Let Bl = M(:, Jl)A
−1
l , and Cl = A−1

l M(Il, :);
Set bij equal to the largest in modulus entry of both Bl and Cl;
if bij is from Bl then

Replace the jth row of Al with the ith row of M(:, Jl)
else

Replace the ith column of Al with the jth column of M(Il, :)

l := l + 1;

However, this algorithm requires two backslash operations at each step. To simplify this

to one backslash operation at each step, we may consider an alternating maxvol algorithm

where we alternate between optimizing swapping rows and columns. Note that this converges

to a dominant submatrix because the sequence vol(Al) is again increasing and bounded above.

Algorithm 8: Alternating Maximal Volume Algorithm

Input: n×m matrix M , r × r nonsingular submatrix A0, tolerance ε > 0, l = 0,
bij =∞

Result: Al a close to dominant submatrix of M with index set (Il, Jl) in M .
while max{|bij| , |cij|} > 1 + ε do

Let Bl = M(:, Jl)A
−1
l ;

Set bij equal to the largest in modulus entry of Bl;
if |bij| > 1 + ε then

Replace the jth row of A0 with the ith row of M(:, J0)

Let Cl = A−1
l M(Il, :);

Set cij equal to the largest in modulus entry of Cl;
if |cij| > 1 + ε then

Replace the ith column of Al with the jth column of M(Il, :)

l := l + 1;
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3.4 Greedy Maximum Volume Algorithms

We may reduce the number of backslash operations needed to find a dominant submatrix by

swapping more rows at each step, which we will call a greedy maxvol algorithm. The greedy

maxvol algorithm is similar the the maxvol algorithm. The main difference is that instead

of swapping one row every iteration, we may swap two or more rows. First, we will describe

the algorithm for swapping at most two rows of an n × r matrix, which we will call greedy

maxvol, or 2-greedy maxvol.

Given an n × r matrix M , initial r × r nonsingular submatrix A0, and tolerance ε > 0,

we do the following.

Algorithm 9: 2-Greedy Maximal Volume Algorithm

Input: n× r matrix M , r × r nonsingular submatrix A0, tolerance ε > 0
Result: Al a close to dominant submatrix of M .
Let l = 0, B0 = MA−1

0 ;
Set bi1j1 equal to the largest in modulus entry of B0;
while |bi1j1| > 1 + ε do

Replace the j1th row of Al with the i1th row of M ;
Set bi2j2 equal to the largest in modulus entry of Bl over all columns excluding
the j1st column;

Let B′l =

[
bi1j1 bi1j2
bi2j1 bi2j2

]
;

if vol(B′l) > |bi1j1| then
Replace the j2th row of Al with the i2th row of M .

l := l + 1;
Let Bl = MA−1

l ;
Set bi1j1 equal to the largest in modulus entry of Bl;

To prove that this algorithm converges, recall Hadamard’s inequality. For an n×n matrix

N , we have

vol(N) ≤
n∏
i=1

‖N(:, i)‖ .

For an n×m matrix M , let A be a square submatrix of M . Then it follows that vol(A) ≤∏n
i=1 ‖M(:, i)‖.
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Theorem 22. The sequence vol(Al) is increasing and is bounded above by
∏n

i=1 ‖M(:, i)‖.

Therefore, it converges.

Proof. Note that multiplication by an invertible matrix does not change the ratio of de-

terminants of pairs of corresponding submatrices. Suppose we only swap one row. Then

det(Al+1)

det(Al)
=

bi1j1
det(I)

= bi1j1 . Therefore, since |bi1j1| > 1, we have vol(Al+1) > vol(Al).

Now suppose we swap two rows. Then after permutation of rows, the submatrix of Bn

corresponding to Al+1 is
[
B′l R
0 I

]
in block form, which has determinant det(B′l). Therefore

similarly to before, we have that det(Al+1) = det(B′l) det(Al), and since vol(B′l) > |bi1j1| > 1,

we have that vol(Al+1) > vol(Al), so vol(Al) is an increasing sequence.

Note that when we are swapping two rows, the ratio between vol(Al+1) and vol(Al) is

maximized when vol(B′l) is maximized.

For a more general algorithm, we search for a largest element in each of the r rows of Bl:

|bi1j1| ≥ |bi2j2| ≥ · · · ≥ |birjr |. Define bk := bikjk . Let

B
(k)
l =



bi1j1 bi1j2 . . . bi1jk

bi2j1 bi2j2 . . . bi2jk
...

...
...

bikj1 bikj2 . . . bikjk


.

Then we replace the jkth row of An with the ikth row of M if vol(
[
B

(k)
l xk
yk bk+1

]
) ≥ vol(B

(k)
l ),

where xk =

 bi1jk
bi2jk

...
bik−1jk

, and yk = [ bikj1 bikj2 ··· bikjk−1 ]. Using lemma 3, the Schur deter-

minant formula for the determinant of block-matrices, this condition is equivalent to the

condition that

∣∣∣∣bk+1 − dk
[
B

(k)
l

]−1

ck

∣∣∣∣ ≥ 1. In particular, if |bk+1| > 1, and sgn(bk+1) 6=

sgn(dk

[
B

(k)
l

]−1

ck)), then the condition will be met. The general h-greedy maxvol algorithm

for swapping at most h rows at each iteration runs as follows.
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Algorithm 10: h-Greedy Maximal Volume Algorithm

Input: n× r matrix M , r × r nonsingular submatrix A0, tolerance ε > 0, l = 0
Result: Al a close to dominant submatrix of M .
Let B0 = MA−1

0 ;
Set bi1j1 equal to the largest in modulus entry of B0;
while |bi1j1| > 1 + ε do

Replace the j1th row of Al with the i1th row of M ;
for k = 2:h do

Set bikjk equal to the largest in modulus entry of Bl over all columns
excluding the j1, . . . , jk−1 columns;

Let B′k =


bi1j1 bi1j2 · · · bi1jk
bi2j1 bi2j2 · · · bi2jk

...
...

...
bikj1 bikj2 · · · bikjk

;

if vol(B′k) > vol(B′k−1) then
replace the jkth row of Al with the ikth row of M ;

else
break;

l := l + 1;
Let Bl = MA−1

l ;
Set bi1j1 equal to the largest in modulus entry of Bk;

Similarly to before, we may generalize the h-greedy maxvol algorithm to n×m matrices

by alternating between the rows and columns.

What is the probability that we actually swap more than one row in our h-greedy maxvol

algorithm? If we assume that sgn(bk+1) and sgn(dk

[
B

(k)
n

]−1

ck)) are equal with probability

1
2
, then at each iteration we will have a 1

2
chance of swapping an additional row. According

to these assumptions as r gets large, the expected number of swaps will be at least 2 in the

generalized maxvol algorithm.

3.5 Greedy Maxvol Numerical Experiments

The question now is, how many backslash operations, and how much computational time

does the h-greedy maxvol algorithm save when compared to the greedy maxvol algorithm
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in practice? We will generate 100 random 5000 × r matrices, and calculate the average

number of backslash operations, and average computational time, needed to find a dominant

submatrix within a relative error of 10−8 for r = 30, 60, 90, 120, 150, 180, 210 and 240. In

table 1 we plot the average number of backslash operations, and in table 2 we plot the

average computational time. As we can see the number of backslash operations and the

computational time tends to taper off around, h = 3, and higher h does not reduce the

number of backslash operations calculated or computational time very much.

r Average Number of Backslash Operations
h = 1 h = 2 h = 3 h = 4 h = r

30 33.92 23.84 20.88 20.33 19.84
60 50.56 34.05 31.78 31.31 29.56
90 62.68 42.91 38.39 37.29 38.06
120 71.64 51.46 44.43 42.57 41.12
150 81.97 54.78 50.08 46.02 46.33
180 89.75 58.93 54.06 52.54 53.10
210 95.68 64.82 57.93 55.25 53.37
240 99.65 69.85 60.77 57.39 55.55

Table 1: Average number of backslash operations needed to find a dominant submatrix of
100 random 5000 × r matrices using h-greedy maxvol algorithm within a relative error of
10−8.

r Average Time Taken
h = 1 h = 2 h = 3 h = 4 h = r

30 0.1310 0.1195 0.1072 0.1048 0.1028
60 0.2653 0.2121 0.1993 0.1973 0.1883
90 0.5128 0.4217 0.3823 0.3716 0.3840
120 0.8644 0.7168 0.6190 0.5968 0.5850
150 1.2885 1.0194 0.9437 0.8723 0.8946
180 1.8529 1.4043 1.2863 1.2581 1.2983
210 2.4726 1.9294 1.7411 1.6637 1.6285
240 3.0215 2.4335 2.1348 2.0247 2.0117

Table 2: Average time in seconds to find a dominant submatrix of 100 random 5000 × r
matrices using h-greedy maxvol algorithm within a relative error of 10−8.

Next, we will plot the number of backslash operations and the computational time for

running an alternating h-greedy algorithm on 5000× 5000 matrices.
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r Average Number of Backslash Opperations
h = 1 h = 2 h = 3 h = 4 h = r

30 33.63 23.58 21.16 20.49 19.98
60 51.22 34.65 31.81 30.39 30.13
90 65.52 44.31 38.75 38.71 37.06
120 74.13 48.49 45.42 43.79 43.09
150 80.81 55.44 51.24 47.77 48.24
180 89.85 60.85 52.64 50.52 49.04
210 95.74 63.96 57.88 56.89 53.16
240 100.45 67.64 59.38 59.04 55.41

Table 3: Average number of backslash operations needed to find a dominant submatrix of
100 random 5000 × 5000 matrices using h-greedy maxvol algorithm within a relative error
of 10−8.

r Average Time Taken
h = 1 h = 2 h = 3 h = 4 h = r

30 0.1360 0.0930 0.0795 0.0754 0.0730
60 0.4169 0.2644 0.2457 0.2351 0.2372
90 0.8349 0.5577 0.4921 0.4940 0.4797
120 1.3528 0.8887 0.8391 0.8114 0.8128
150 2.0072 1.3865 1.2946 1.2105 1.2435
180 2.7712 1.8928 1.6516 1.5875 1.5680
210 3.6673 2.4751 2.2535 2.2290 2.1063
240 4.5758 3.1068 2.7553 2.7464 2.6220

Table 4: Average time in seconds to find a dominant submatrix of 100 random 5000× 5000
matrices using h-greedy maxvol algorithm within a relative error of 10−8.

As we can see from table 3 and table 4 the computational time and number of backslash

operations needed decreases as h increases up to r, and choosing h = r appears to give the

best results.

3.6 Maxvol Skeleton Approximation on Images

We will use the skeleton approximation to find a low rank approximation of the following

128× 128 penny picture with entries being integers between 0 and 255.

The first figure, fig. 6, shows the full unmodified penny picture. The next figure, fig. 7,

on the left shows 50 rows where their intersecting 50× 50 submatrix is chosen with respect
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Figure 6: 128× 128 penny picture. Each pixel is an integer from 0 to 255.

to the maxvol algorithm. We then show the skeleton approximation with respect to this

submatrix. As can be seen on the right, this is a good approximation and has peak signal

to noise ratio equal to 36.4188.

Figure 7: Left: 50 rows and columns chosen from the maxvol algorithm. vol(A) = 1.59×1096.
Right: Rank 50 skeleton approximation of penny with respect to rows and columns chosen
from the max-volume algorithm with peak signal to noise ratio equal to 36.4188.

For comparison, fig. 8 on the left shows 50 random rows and columns. The right shows

the skeleton approximation of the penny picture with respect to a random 50×50 submatrix.

As can be seen, the approximation is not very good, and the picture has a peak signal to
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noise ratio equal to 14.2255.

Figure 8: Left: 50 random rows and 50 random columns such that their intersecting sub-
matrix A has volume vol(A) = 1.46× 1077. Right: Rank 50 pseudo-skeleton approximation
with rows and columns chosen randomly. Peak Signal to noise ratio equal to 14.2255.

In table 5, we study various pictures and find a suitable rank r such that the skeleton

approximation with respect to a submatrix found with the maxvol algorithm has peak signal

to noise ratio approximately equal to 32. Note that with the skeleton approximation, we are

using the actual entries of the matrix to parameterize the low rank approximation.

3.7 Findvol Algorithm

Given an n×m matrix M , we may modify the maxvol algorithm to search for a submatrix of

some fixed determinant k. We will call this modified version of the maxvol algorithm the find-

vol algorithm. The find volume algorithm is identical to the maxvol algorithm, but instead of

searching for max(i,j){|(MA−1)ij|} at each step, we search for min(i,j){
∣∣∣(MA−1)ij − k

det(A)

∣∣∣}.
We repeat until there exists an index (i, j) such that (MA−1)ij − k

det(A)
= 0, which means

that det(A) = k.

Theorem 23. Let An be the nth iterate submatrix of the findvol algorithm. Then we have

|det(An)− k| ≥ |det(An+1)− k|. In other words, the sequence {|det(An)− k|} is decreasing.
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Image Resolution r PSNR
bang 512× 512 350 32.23
barbara 512× 512 260 32.31
bike 512× 512 420 32.18
brain 512× 512 115 33.53
clock 512× 512 90 33.20
F16 512× 512 230 32.22
finger 512× 512 180 32.67
house 256× 256 75 31.35
knee 512× 512 105 32.21
monkey 512× 512 440 32.38
mri 512× 512 105 32.73
boat 256× 256 130 32.28
pepper 512× 512 375 32.61
saturn 512× 512 75 33.45

Table 5: Uses a random initial r × r matrix, then applies the maxvol algorithm. Uses
resulting matrix for skeleton approximation. Shows the peak signal to noise ratio between
skeleton approximation and original image.

One application of the findvol algorithm is the following. Given an integer matrix M , we

may want to find a low-rank approximation of M whose entries remain as integers. Finding

the closest low rank integer matrix is in general a very difficult problem. However, it may

be possible to find a low-rank integer approximation that is not necessarily the closest.

The problem to solve is given an integer matrix M , we would like to find a rank r

integer approximation Mr to M . One way to do this, is to find an r × r submatrix A of

M such that det(A) = 1 or −1 using the findvol algorithm. If we can do so, then we may

employ a rank r Skeleton approximation using rows and columns corresponding to A. Setting

Mr = CA−1R, we get that Mr is a rank r integer matrix with rows and columns identical to

the corresponding rows and columns in M . This is true because the inverse A−1 has integer

entries by Cramer’s rule, and so Mr = CA−1R has integer entries as well.

Theorem 24. Without loss of generality, suppose ‖M(:, 1)‖ ≥ ‖M(:, 2)‖ ≥ · · · ≥ ‖M(:,m)‖.
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Given Mr as above, we have

‖M −Mr‖∞ ≤ (r + 1)σr+1(M)
r∏
i=1

‖M(:,m)‖ .

Alternatively, if |Mij| ≤ B for some B, then we have

‖M −Mr‖∞ ≤ (r + 1)r
r
2Brσr+1(M)

Proof. Let m be largest volume over all r × r submatrices of M . Then we have

‖M −Mr‖∞ ≤ m(r + 1)σr+1(M).

This follows from Theorem 2.2 in [21]. From Hadamard’s inequality, we have

m ≤
r∏
i=1

‖M(:,m)‖ ,

so we get the first result. Similarly from Hadamard’s inequality, we have m ≤ r
r
2Br, giving

us the second result.

In further generality, given a ring of integers R of an algebraic number field K, and a

matrix M with entries in R, we could attempt to find a low rank approximation Mr to M

with entries remaining in R. To do this we could use the findvol algorithm to search for a

submatrix with unit determinant u for all units u in the unit group U(R). Once a submatrix

A with unit determinant is found, we calculate the skeleton approximation Mr with respect

to that submatrix. The resulting matrix has entries remaining in R, since A−1 has entries

in R by Cramer’s rule.
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3.8 A Graph Theoretic Reformulation of Dominant submatrices

In this section, we will re-formulate the concept of a dominant submatrix in graph theoretic

terms. We use submatrices as nodes in the graph, and define an edge between two close

submatrices.

First, let M ∈ Mn,k. We define the graph Gk(M) as the graph associated to M where

the nodes of Gk(M) are the k × k submatrices AI of M up to permutation of rows. Two

nodes AI and AI′ are connected if we may obtain AI′ by swapping one row in AI with a row

in M .

More generally, for M ∈ Mn×m, we let Gk(M) = (Vk, Ek) be the graph associated to

M where the nodes of Gk(M) are the k × k submatrices AI,J of M up to permutations of

rows and columns. There is an edge connecting two nodes of Gk(M) if we can obtain one

associated submatrix from another by swapping one row.

We define a function f : Vk → R, such that f(AI,J) = vol(AI,J), and our goal is to

find the global maximum of f , which corresponds to the largest determinant in modulus

submatrix of M . Note that f is well defined, since swapping any two rows or columns of a

matrix does not change its volume.

Dominant submatrices A� are the local maximums of f , since any single row or column

swap would decrease the value of f .

The standard maxvol algorithm from [21] has the following interpretation. Given a

nonsingular k × k submatrix AI,J , we can easily calculate which adjacent submatrix in Gk

has the largest increase in f . We then replace AI,J with this new submatrix, and repeat

until we reach a local maximum of f , that is, a dominant submatrix.

For M ∈ Rm×n, we define the graph of k × k submatrices similarly, where two nodes are

connected if we can obtain one submatrix from another by permuting one row or column.

We now recall the definition of the Johnson graph J(m, k), whose nodes are the subsets

with k elements of a set with m elements total. There is an edge connecting two nodes if
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and only if the intersection of the two subsets contains exactly k − 1 elements.

Figure 9: Examples of Johnson graphs from https://mathworld.wolfram.com/JohnsonGraph.html.

J(m, k) is a k(m−k)-regular graph, meaning each node has exactly k(m−k) connecting

edges. J(m, k) also has has
(
m
k

)
nodes, (m−k)k

2

(
m
k

)
edges, and has diameter min(k,m− k).

Theorem 25. For M ∈Mm×k, Gk(M) is isomorphic to the Johnson graph J(m, k).

Proof. Consider the map φ : Gk(M) → J(m, k) that takes AI 7→ I. This map is injective

since the node AI is defined up to permutation of rows, and it is surjective since for every k

element set I, there exists an AI . Moreover, if two nodes AI and AI′ are adjacent, then we

may obtain AI′ by swapping one row in AI with a row in M . Therefore, I and I ′ differ by

exactly one index, and so |I ∩ I ′| = k − 1, so I and I ′ are adjacent in J(m, k). Similarly, if

I and I ′ are adjacent in J(m, k), then we may obtain AI′ from AI by permuting one row in

M .

We now introduce the notion of the graph Cartesian product. Given two graphs G and

H, we define the graph Cartesian product G�H as the graph with vertices V (G) × V (H),
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Figure 10: The Johnson graph J(5,2) from https://en.wikipedia.org/wiki/Johnson graph.

and an edge between two nodes (u, v) and (u′, v′) if and only if either u = u′ and v is adjacent

to v′ in H or v = v′ and u is adjacent to u′ in G.

Theorem 26. More generally, for M ∈Mn×m, Gk(M) is isomorphic to the graph Cartesian

product of Johnson graphs J(m, k)�J(n, k)

Proof. Consider the map φ : Gk(M)→ J(m, k)�J(n, k) that maps AI,J 7→ (I, J). This map

is injective since the node AI,J is defined up to permutation of rows and columns, and it is

surjective since for every (I, J), there exists a submatrix AI,J 7→ (I, J).

Moreover, suppose AI,J and AI′,J ′ are adjacent in Gk(M). Then we may obtain AI′,J ′

from AI,J by permuting either two rows or two columns in M , which means exactly one of

the following must be true. Either I = I ′ and J and J ′ differ by one element, or J = J ′ and

I and I ′ differ by one element. Therefore (I, J) and (I ′, J ′) are adjacent in J(m, k)�J(n, k).

Similarly, if (I, J) and (I ′, J ′) are adjacent in J(m, k)�J(n, k), then we may obtain AI′,J ′

from AI,J by permuting two rows or columns in M .

Suppose G1 has v1 vertices and e1 edges, and that G2 has v2 vertices and e2 edges. Then it
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Figure 11: The red vertices are an example of an independent vertex set.

is known that the number of vertices in G1�G2 is v1v2, and the number of edges is v1e2+v2e1.

Using this, we get that J(m, k)�J(n, k) has
(
n
k

)(
m
k

)
nodes, and k(m+n−2k)

2

(
m
k

)(
n
k

)
edges.

3.9 Upper bounds on the number of dominant submatrices

In this section we will prove a new upper bound on the number of possible dominant sub-

matrices of a matrix for almost every matrix. We start by introducing a few concepts from

graph theory.

Definition 9. An independent vertex set of a graph G is a subset of the vertices of G such

that no two vertices are adjacent in G. See for example fig. 11. The independence number of

a graph G is defined to be the maximum size over all independent sets in G, and is denoted

α(G).

We now introduce the following lemma.

Lemma 5. No two dominant k × k submatrices in M of differing volume are adjacent in

Gk(M).

Proof. Let X and Y be k × k submatrices of M which are adjacent in Gk(M), and suppose

that 0 < vol(Y ) < vol(X). Then there exists a constant c > 1 such that vol(X) = c vol(Y ).

Since X and Y are adjacent in Gk(M), then without loss of generality let us assume that
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we may obtain X from Y by replacing the first k entries in the jth row of M with the first

k entries in the ith row of M . Then c is the (i, j)th entry of M(:, 1 : k)Y −1, and so Y is not

dominant because c > 1.

Next, we will provide an upper bound for the number of dominant submatrices for certain

classes of matrices.

Theorem 27. For M ∈Mm×k, the number of dominant submatrices of differing volume in

M is at most α(J(m, k)), the independence number of J(m, k). More generally, for M ∈

Mn×m, the number of dominant submatrices of differing volume is at most α(J(n, k)�J(m, k)).

Proof. Since no two dominant submatrices of differing determinant in modulus are adjacent,

the independence number, which is the maximum number of mutually non-adjacent nodes

in our graph, provides an upper bound for the number of dominant submatrices of differing

minors in modulus.

In other words, if the independence number of Johnson graphs is not an upper bound for

the number of dominant submatrices, then there must necessarily be at least two dominant

submatrices with the same volume. We will now show that another set of matrices which

contains this class of matrices has measure zero.

Theorem 28. Let T be the set of matrices for which each matrix has at least two k × k

submatrices of equal volume. Then T has measure zero in Mn×m.

Proof. We will show that T is an algebraic variety. Then since T is an algebraic variety

which is not all of Mn×m, it must have Lebesgue measure zero.

Since there are only finitely many submatrices, without loss of generality we may assume

that two specific submatrices A1 and A2 have equal volume. Moreover, since two submatrices

of equal volume v may only have determinant v or −v, we may assume that the submatrices

have equal determinant. That is, det(A1)−det(A2) = 0. This is a polynomial equation, and
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so the set of matrices which have this property forms a hypersurface in Mn×m, which has

measure zero. More specifically, T is the finite union of hyper surfaces which are zero sets

of polynomials of the form det(Ai)− det(Aj) or det(Ai) + det(Aj).

Corollary 1. The set of matrices S which have two dominant, adjacent k × k submatrices

of equal volume has measure zero in Mn×m.

Proof. From theorem 28, the set of matrices T which have at least two k× k submatrices of

equal volume has measure zero. Since S ⊂ T , then the measure of S must also be equal to

zero.

Theorem 29. For almost every matrix M ∈Mn×k, the number of dominant k×k submatri-

ces is at most α(J(m, k)). Moreover, for almost every M ∈Mn×m, the number of dominant

k × k submatrices is at most α(J(n, k)�J(m, k)).

Proof. This is true for matrices which have no two dominant submatrices of equal deter-

minant from theorem 27. Moreover, the complement of this set has measure zero from

corollary 1. Therefore, we have the desired result.

Note that it is not necessarily likely that a random n×mmatrix will have α(J(n, k)�J(m, k))

number of k×k dominant submatrices. For empirical results on the average number of dom-

inant submatrices of a random matrix, see section 3.11.

For an upper bound of the number of dominant k× k submatrices of an n×m matrix in

terms of the independence numbers of Johnson graphs, we have the following result.

Theorem 30. For A ∈Mn×m, the number of dominant submatrices of differing determinant

in modulus in A is at most min{α(J(m, k))
(
n
k

)
, α(J(n, k))

(
m
k

)
}.

Proof. First, note that from [31], we have that for graphs G and H, the independence

number satisfies α(G�H) ≤ min{α(G) |V (H)| , α(H) |V (G)|}. Using theorem 27, we have

that the number of dominant submatrices is bounded above by α(J(m, k)�J(n, k)) ≤

min{α(J(m, k))
(
n
k

)
, α(J(n, k))

(
m
k

)
}.
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3.10 Sharp Inequality Examples

Given M ∈ Mn×k the independence number of the Johnson graph α(J(n, k)) provides an

upper bound for number of k×k dominant submatrices for almost every M . More generally,

for M ∈ Mn×m, α(J(n, k)�J(m, k)) is an upper bound for the number of k × k dominant

submatrices for almost all M .

In general, α(J(n, k)) is not known. However, it is known in a few cases. For example

1. α(J(n, 1)) = 1

2. α(J(n, 1)�J(m, 1)) = min{m,n}

3. α(J(n, 2)) = bn
2
c

Moreover, since J(n, k) ∼= J(n, n− k), we also have:

4. α(J(n, n− 1)) = 1

5. α(J(n, n− 1)�J(n, n− 1)) = n

I will provide matrices for which the upper bound on the number of submatrices is reached

such that no two dominant submatrices are adjacent.

The first case is trivial, any non-zero vector has at least one element of maximal modulus,

and so is a dominant 1× 1 submatrix.
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In the second case, with out loss of generality suppose m ≤ n. Consider the matrix:



a1 0 0 · · · 0

0 a2 0 · · · 0

0 0 a3 · · · 0

...
...

...
. . .

0 0 0 · · · am

0 0 0 · · · 0

...
...

...
...

0 0 0 · · · 0


Then assuming ak 6= 0 for k = 1, . . . ,m, each submatrix [ak] is a 1×1 dominant submatrix,

of which there are m total, and no two are adjacent.

In the third case, first let us assume that n is even. Let Ak =
[

cos(θk) − sin(θk)
sin(θk) cos(θk)

]
, where

θk = π(k−1)
n

for k = 1, . . . , n
2
. Then we will show that each of Ak are dominant submatrices

of the matrix

 A1
A2

...
An

2

.
Moreover, we will show that Ak are not adjacent to any other dominant submatrix. First,

note that A−1
k =

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

]
, and so

AjA
−1
k =

cos(θj) cos(θk) + sin(θj) sin(θk) cos(θj) sin(θk)− sin(θj) cos(θk)

sin(θj) cos(θk)− cos(θj) sin(θk) cos(θj) cos(θk) + sin(θj) sin(θk)


=

cos(θj − θk) − sin(θj − θk)

sin(θj − θk) cos(θj − θk)


=

cos(π(j−k)
n

) − sin(π(j−k)
n

)

sin(π(j−k)
n

) cos(π(j−k)
n

)

 .
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It suffices to show that each entry of AjA
−1
k is less than 1 in modulus unless j = k. Note

that −π
2
< θj − θk < π

2
, and so |sin(θj − θk)| < 1. Moreover, θj − θk = 0 if and only if j = k,

and so |cos(θj − θk)| = 1 if and only if j = k.

When n is odd the matrix


A1
A2

...
Abn2 c

0

 with one row of zeros in the last row similarly has

bn
2
c dominant submatrices, no two of which are adjacent.

The fourth case is also trivial, any n × (n − 1) full rank matrix has a (n − 1) × (n − 1)

submatrix of maximal volume and is dominant.

For the fifth case, the diagonal matrix



a1 0 0 · · · 0

0 a2 0 · · · 0

0 0 a3 · · · 0

...
...

...
. . .

...

0 0 0 · · · an


with all ak 6= 0 also provides an example where there are exactly n non-adjacent dominant

(n − 1) × (n − 1) submatrices. In particular, the cofactor Cij = 0 if i 6= j, and Cii 6= 0.

Therefore, the minors Aii are each dominant submatrices which are not adjacent.

3.11 Numerical Experiments Approximating the Expected Value

of the Number of Dominant submatrices

Although α(J(n, k)�J(m, k)) provides an upper bound for the total number of possible

dominant k × k submatrices of an n ×m matrix for almost every matrix, in general there

will be fewer dominant submatrices. For example, consider the 1 × 1 submatrices of 2 × 2

matrices of the form M = [ a11 a12
a21 a22 ]. Assume that no two entries are equal. Also without loss

of generality by permuting rows and columns, assume that the largest entry in modulus is
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a11. Then we have the following six possibilities for the order of the entries aij

1. |a11| > |a12| > |a21| > |a22|

2. |a11| > |a21| > |a12| > |a22|

3. |a11| > |a12| > |a22| > |a21|

4. |a11| > |a21| > |a22| > |a12|

5. |a11| > |a22| > |a12| > |a21|

6. |a11| > |a22| > |a21| > |a12|

In each case, a11 is a dominant submatrix since
∣∣∣ aija11

∣∣∣ ≤ 1 for all (i, j). However, in cases

5 and 6, a22 is also a dominant submatrix since
∣∣∣a12

a22

∣∣∣ < 1 and
∣∣∣a21

a22

∣∣∣ < 1. These are the only

possibilities for a random 2 × 2 matrix to have more than one dominant 1 × 1 submatrix.

So if we assume that each of cases 1 through 6 happens with equal probability, then the

chance of there being one 1× 1 dominant submatrix in a random 2× 2 matrix happens with

probability 2/3, and the chance of there being two dominant 1 × 1 submatrix of a random

2× 2 submatrix happens with probability 1/3. Therefore, the expected value of the number

of dominant 1× 1 submatrices of a random 2× 2 matrix is 4/3.

The expected value of the number of k × k dominant submatrices of a random matrix

can be approximated with a Monte Carlo method. One can generate a random matrices

Ai, 1 ≤ i ≤ a. Then, choose Bj, 1 ≤ j ≤ b, a random k × k submatrix of Ai, and

determine whether or not Bj is dominant. We repeated this b times, and let di be the total

number of submatrices tested which were dominant. Then since
(
n
k

)(
m
k

)
is the total number

of submatrices of Ai, we have that
(
n
k

)(
m
k

)
di
b

is approximately the total number of dominant

submatrices of M . We then average this over all i, so the
(
n
k

)(
m
k

)
1
ab

∑a
i=1 di is approximately

the expected value of the total number of dominant submatrices of a random n×m matrix.
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k n
3 4 5 6 7 8 9 10

2 1.0005 1.0056 1.0177 1.0248 1.0321 1.0379 1.0585 1.0697
3 1.0000 0.9998 1.0232 1.0532 1.0947 1.1224 1.2049 1.2299
4 1.0000 0.9996 1.0373 1.0986 1.1810 1.2581 1.3138
5 1.0000 0.9997 1.0527 1.1127 1.2053 1.3202
6 1.0000 1.0002 0.9992 1.1360 1.2909
7 1.0000 1.0008 1.0669 1.1741
8 1.0000 1.0002 1.0809
9 1.0000 0.9989
10 1.0000

Table 6: Experimental expected number of k × k dominant submatrices of a random n× k
matrix with entries chosen uniformly at random on the interval [0, 1]. 10000 randomly chosen
submatrices of 1000 random matrices.

For k × k matrices, there is exactly one k × k submatrix, which means there is one

dominant submatrix. For (k + 1)× k matrices M , any submatrix may be permuted to any

other submatrix by swapping two rows of M . In other words, Gk(M) is a complete graph.

Therefore, the only way for there to be more than one dominant submatrix would be if there

were two submatrices with the same volume, which happens with probability zero. Therefore

with probability one, there will be exactly one dominant submatrix.

For a specific example, consider the 128 × 128 penny picture P . We will approximate

the number of 2 × 2 dominant submatrices by sampling N random matrices A with some

index (I, J) and determining whether or not those matrices are dominant by calculating

‖P (:, J)A−1‖∞ and ‖A−1P (I, :)‖∞. If we let d be the total number of dominant submatrices

found by this method, then d
N

should approximate the ratio of the total number of dominant

submatrices to the total number of 2 × 2 submatrices, which is equal to
(

128
2

)2
. Therefore,

the total number of dominant submatrices is approximated by
(

128
2

)2 d
N

We choose N = 2000000, and get d = 17. Therefore, there are approximately 562

dominant 2× 2 submatrices out of 66064384 total 2× 2 submatrices.
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3.12 An Upper Bound on the Independence Number of Johnson

Graphs

There is lots of literature on the independence number of Johnson graphs, see for example,

[27]. In general, α(J(n, k)) is not known. It is known however, that the independence number

of Johnson graphs is equal to the size of the largest constant weight code of word length n,

weight k, and distance at least 4 [28]. In other words, it is equal to the maximum number

of binary vectors of length n having k ones and n− k zeros such that any two vectors differ

in at least 4 places.

We do have an iterative upper bound on the independence number of Johnson graphs

called the Johnson bound. The Johnson bound states that α(J(n, k)) ≤ n
k
α(J(n−1, k−1)).

Therefore by induction, we have that α(J(n, k)) ≤ n!
(n−k+1)!k!

. Since the total number of

vertices of J(n, k) is
(
n
k

)
, we have that the independence ratio, the ratio of the independence

number to the total number of vertices, satisfies the inequality

α(J(n, k))(
n
k

) ≤ 1

1 + n− k
.

For an alternative proof of this upper bound in terms of the eigenvalues of the adjacency

matrix of J(n, k), we introduce the following theorem from [29].

Theorem 31. For any connected regular graph G, with v vertices, vertex degree d, and

smallest eigenvalue of the adjacency matrix s, the independence number α(G) satisfies the

inequality

α(G)

v
≤ 1

1− d
s

Suppose G is the Johnson graph J(n, k). Since J(n, k) ∼= J(n, n− k), then without loss

of generality, suppose k ≤ n
2
. Then G is a regular graph with vertex degree d = k(n − k).

Moreover, the number of vertices v =
(
n
k

)
. Also the eigenvalues of the adjacency matrix of

J(n, k) are known, they are λi = (k − i)(n − k − i) − i for i = 0, . . . , k, which has smallest
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eigenvalue λk = −k.

Therefore by theorem 31, we have the inequality

α(G)(
n
k

) ≤ 1

1− k(n−k)
−k

=
1

1 + n− k

Now suppose G is the Cartesian product of Johnson graphs J(n, k)�J(m, l). Again

suppose k ≤ n
2

and l ≤ m
2

. Note that the Cartesian product of connected regular graphs are

connected regular, so we may use theorem 31. In this case we have d = k(n− k) + l(m− l)

and v =
(
n
k

)(
m
l

)
. For the eigenvalues of G, we need to following theorem from [30].

Theorem 32. Let G and H be graphs with adjacency eigenvalues {λi} and {µj} respectively.

Then the eigenvalues of G�H are of the form λi + µj for some i and j.

Then if λi = (k− i)(n− k− i)− i and µj = (l− j)(m− k− j)− j are the eigenvalues of

J(n, k) and J(m, l) respectively, G = J(n, k)�J(m, l) has eigenvalues of the form λi + µj =

(k − i)(n − k − i) − i + (l − j)(m − k − j) − j for i = 0, . . . , k, and j = 0, . . . , l. Therefore

the smallest graph eigenvalue is

s = min
i,j
{λi + µj}

= min
i
{λi}+ min

j
{µj}

= λk + µl

= −k − l

So we have the inequality

α(G)(
n
k

)(
m
l

) ≤ 1

1 + k(n−k)+l(m−l)
k+l

.
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4 A Schur Complement Based Gradient Descent Method

for Matrix Completion

In this section we will introduce a new gradient descent method for low-rank matrix comple-

tion which we will call the Schur gradient descent. One nice property of the Schur gradient

descent is that the gradient is a rational function of the actual entries of the matrix. This

means that we do not need to compute a singular value decomposition at each step.

4.1 Unique Matrix Completion Example

We may use the Schur complement to find a unique rank r completion for a certain class of

partially known matrices. The following pattern of MΩ is particularly useful. Assume that

we may permute a given partially known matrix MΩ into the following MΩ = [ A B
C � ], where

A is r × r, B is r × (m − r), and C is (n − r) × k, all full of known entries, and � is size

(n− r)× (m− r) and contains only unknowns.

In this case, we will have 2nr − r2 known entries, and we have the following result.

Theorem 33. If MΩ can be represented up to permutation of rows and columns in block

form by MΩ = [ A B
C � ], where A is an r × r invertible submatrix, then MΩ has a unique rank

r completion where � = CA−1B.

Proof. Let M = [ A B
C D ] be a completion of MΩ. Then from lemma 4, we have that rank(M) =

r if and only if D = CA−1B.

4.2 Matrix Completion With a Known Invertible Submatrix

We generalize the previous case where A,B, and C are known and D is unknown to the

case where A is fully known, and B, C, and D are partially known. Recall that sinceMr is

the zero set of all (r + 1) × (r + 1) minors, and AΩ is the zero set of equations of the form
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xij −Mij for all known Mij, then their intersection AΩ ∩Mr, which is the set of all possible

rank r completions of MΩ, is the simultaneous zero set of all (r + 1) × (r + 1) minors and

equations of the form xij −Mij for all known Mij. However, these equations are redundant

in the sense that we do not need them all to describe the variety AΩ ∩Mr. In the following

theorem, we will provide a smaller set of equations which have zero set equal to AΩ ∩Mr.

In particular, we will examine the case when MΩ has the form MΩ =
[
A BΩ
CΩ DΩ

]
, where A

is some k×k fully known submatrix, and BΩ, CΩ, and DΩ are partially unknown. Note that

MΩ may always be permuted to this form. As a worst case scenario, take k = 1, and A to

be a 1× 1 submatrix.

Theorem 34. Suppose that MΩ can be permuted to the form MΩ =
[
A BΩ
CΩ DΩ

]
, where A is

a known k × k invertible submatrix for some k, and BΩ, CΩ, and DΩ are known entries.

Then AΩ ∩Mr is the zero set of all (r + 1) × (r + 1) minors containing A, along with the

equations xij −Mij for all known Mij. In other words, AΩ ∩Mr is the variety defined by

the equations det(D′ −C ′A−1B′) = 0 for all (r − k + 1)× (r − k + 1) submatrices D′ of DΩ

with corresponding C ′ and B′, along with the equations xij −Mij = 0 for all known Mij. In

particular, when k = r, these determinants simplify to the form dij − c>i A−1bj = 0, for all

dij known and unknown. Where bj is the jth column of B and c>i is the ith row of C.

Proof. Since MΩ contains a known k×k rank k submatrix A, from theorem 13, we have that

AΩ ∩Mr = AΩ ∩ V , since AΩ ∩W is empty. Therefore, AΩ ∩Mr is equal to the zero set

of all (r + 1)× (r + 1) minors which contain A. That is, equations of the form
∣∣ A B′

C′ D′

∣∣ = 0,

where D′ is a (r− k + 1)× (r− k + 1) submatrix of DΩ. By lemma 3, we can express these

equations as det(D′ − C ′A−1B′) = 0, or dij − c>i A−1bj = 0 when k = r.

One strategy is to first recover the unknown elements in BΩ and CΩ from the known

elements in DΩ. If we can do these to find all unknowns in BΩ and CΩ, then we can recover

the unknown elements of DΩ from theorem 33. For this strategy, the number of known

entries in DΩ should be more than the number of unknowns in BΩ and CΩ.
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Let us first fix k = r. To find unknown entries in BΩ, CΩ, and DΩ, we will cast the

matrix completion in a minimization of the norm of the schur complement.

min
1

2

∥∥D − CA−1B
∥∥2

= min
1

2
‖SA‖2 (3)

Where A is a fixed fully known r×r submatrix of MΩ, and B,C, and D are corresponding

submatrices. We subject this minimization to the constraint that PΩ(B) = BΩ, PΩ(C) = CΩ,

and PΩ(D) = DΩ.

To solve the minimization, we can use the gradient descent method. Let us compute the

gradient of the minimizing functional above.

Theorem 35. For some dij known, and some bkj and cik unknown, we have the derivatives

∂

∂bkj
(c>i A

−1bj − dij) = c>i A
−1ek,

and similarly

∂

∂cik
(c>i A

−1bj − dij) = e>k A
−1bj,

where ek is the kth standard basis vector.

Proof. Consider some variable x. Then by the product rule, we have

∂

∂x
(c>i A

−1bj − dij) = c>i A
−1∂bj
∂x

+
∂c>i
∂x

A−1bj.

If x = bkj, then
∂bj
∂x

= ek and
∂c>i
∂x

= 0. Similarly, if x = cik, then
∂bj
∂x

= 0 and
∂c>i
∂x

= e>k .

This leads to a matrix completion algorithm for MΩ. First, we permute MΩ to have the

structure in MΩ =
[
A BΩ
CΩ DΩ

]
where A is of size r× r and is fully knwon, and BΩ, CΩ, and DΩ

are partial known and unknown. . For convenience, Then the gradient descent method is as

follows. Assume the kth iterate B
(k)
Ω , C

(k)
Ω , and D

(k)
Ω have been computed. We compute the

68



(k + 1) iterate 
B

(k+1)
Ω

C
(k+1)
Ω

D
(k+1)
Ω

 =


B

(k)
Ω

C
(k)
Ω

D
(k)
Ω

− h∇f(B
(k)
Ω , C

(k)
Ω , D

(k)
Ω ), (4)

where our loss function

f =
1

2
‖SA‖2 =

∑
i,j

(c>i A
−1bj − dij)2/2

with variables being the unknown entries of BΩ, CΩ, and DΩ and h > 0 is a step size. We

run gradient descent until the (k + 1)th iterative matrix M
(k+1)
Ω =

[
A B

(k+1)
Ω

C
(k+1)
Ω D

(k+1)
Ω

]
is of rank

r, or until the r+ 1st singular value of the (k+ 1)st iterate is sufficiently small. The formula

for ∇F is gives

∂f

∂B
= A−>C>(CA−1B −D)

∂f

∂C
= (CA−1B −D)B>A−>

∂f

∂D
= D − CA−1B

where ∂f
∂X

is a matrix such that ( ∂f
∂X

)ij = ∂f
∂xji

.

For a more general analysis when A is not necessarily r × r, we will analyze the case

where, MΩ is of the form MΩ =
[
A BΩ
CΩ DΩ

]
, where A is a known k× k, k ≤ r, invertible known

submatrix, and BΩ, CΩ, and DΩ are partially known with k < r. By theorem 13, AΩ∩Mr =

AΩ∩V , where V is the vanishing set of all (r+1)×(r+1) minors containing A. By lemma 3,

these equations may be expressed as det(D′−C ′A−1B′) = 0 for all (r+ 1− k)× (r+ 1− k)

submatrices D′ of DΩ with corresponding B′ and C ′. Similarly to before, we cast the matrix

completion problem as a minimization problem of the form
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min
1

2

∑
D′

det(D′ − C ′A−1B′)2

s.t. PΩ(B) = BΩ, PΩ(C) = CΩ, and PΩ(D) = DΩ.

To compute the derivative of this function, recall Jacobi’s formula:

d

dt
det(A(t)) = tr(adj(A(t))

dA(t)

dt
).

Where adj(A) is the adjugate of the matrix A. We will use this formula to calculate the

derivative of the above equation.

Theorem 36. We have the following derivative information:

∂

∂bij
det(D′ − C ′A−1B′) = tr(adj(D′ − C ′A−1B′)(−C ′A−1∂B

′

∂bij
))

∂

∂cij
det(D′ − C ′A−1B′) = tr(adj(D′ − C ′A−1B′)(

∂C ′

∂cij
A−1B′))

∂

∂dij
det(D′ − C ′A−1B′) = adj>(D′ − C ′A−1B′)ij

Proof. Consider some variable x. Then by Jacobi’s formula and the product rule, we have

∂

∂x
det(D′ − C ′A−1B′) = tr(adj(D′ − C ′A−1B′)(

∂D′

∂x
− ∂C ′

∂x
A−1B′ − C ′A−1∂B

′

∂x
)).

Once again, we may employ a gradient descent method to solve this minimization using

the above derivative information.
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In summary, the minimization in eq. (4) is not convex. A simple gradient descent method

starting with any initial matrix will not converge to a minimum in general. A good initial

guess is important for convergence.

4.3 General Matrix Completion With Schur Gradient Descent

We now consider the most general case of matrix completion where the unknown entries are

distributed arbitrarily and do not necessarily contain any specific structure such as a known

invertible submatrix.

Let X = [ A B
C D ], Where the rows and columns of X are permuted such that a fixed

submatrix A is in the top left. We now analyze the case when AΩ, r × r is not completely

known. For the loss function

f(X) =
1

2

∥∥D − CA−1B
∥∥2

=
1

2
‖SA‖2

we once again minimize f using gradient descent. We have the following gradient information

∂f

∂A
= −A−>C>(CA−1B −D)B>A−> = A−>C>SAB

>A−>

∂f

∂B
= A−>C>(CA−1B −D) = A−>C>SA

∂f

∂C
= (CA−1B −D)B>A−> = SAB

>A−>

∂f

∂D
= D − CA−1B = SA

where ∂f
∂X

is the matrix such that ( ∂f
∂X

)ij = ∂f
∂xji

.

Proof. To calculate ∂f
∂A

, we let g(A) = ‖D − CAB‖2
F , and let h(A) = A−1. Then f = g ◦ h.

Define the dot-product (X, Y ) = tr(X>Y ). Then we have the identities df = (C>(CAB −
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D)B>, dA) and dh = A−1(dA)A−1. Using the chain rule, we have

df = (C>(CA−1B −D)B>, A−1(dA)A−1) = (A−>C>(CA−1B −D)B>A−>, dA)

which implies that df
dA

= A−>C>(CA−1B −D)B>A−>. [36]

Putting these together, we have we have the following formula for the gradient.

∇f = PΩc(

( ∂f
∂A

)> ( ∂f
∂B

)>

( ∂f
∂C

)> ( ∂f
∂D

)>

)

= PΩc(

A−1BS>ACA
−1 S>ACA

−1

A−1BS>A S>A

)

Where PΩc sets elements in the known indices in Ω equal to zero. The reason why we

include this term is so that we do not change the known entries of our matrix. Note that

entries in the gradient is a rational function of our actual matrix elements.

By setting the gradient equal to zero, the formula for the gradient implies that for any

critical point, we must have (SA)ij = 0 for all (i, j) ∈ Ωc
D.

In general it is difficult to prove the convergence of gradient descent since our function f

is non-convex.

4.4 Small Numerical Examples of Schur Gradient Descent

Consider the rank 1 matrix M = [ 6 3
2 1 ]. We will test the gradient descent method on the

cases when

Ω =

1 1

1 0

 ,
1 1

0 1

 ,
1 0

1 1

 , and

0 1

1 1

 ,
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with initial guess M0 containing a zero in the unknown entry. The y-axis is a log-scale of σ2,

the second singular value of Mn, and the x-axis is n.

Figure 12: Top left: σ2 of Mn with A unknown. Top right: σ2 of Mn with B unknown.
Bottom left: σ2 of Mn with C unknown. Bottom right: σ2 of Mn with D unknown.

As we can see, convergence is slowest when B is unknown, and fastest when D is unknown.

4.5 Maxvol Schur Gradient Descent

We are now ready to combine the greedy maxvol algorithm and the Schur gradient descent

algorithm to give us the maxvol Schur gradient descent algorithm. There are multiple ways

to combine the greedy maxvol algorithm and the Schur gradient descent. One method is to

alternate between gradient steps and maxvol algorithms. Another method is to employ the

maxvol method once at the beginning of the algorithm on our initial guess M0, or employ

the maxvol algorithm once every fixed number of gradient steps.

4.6 Dominant submatrices of partially known matrices

In order make the Schur gradient descent matrix completion method faster and more robust

to noise, we should choose our known k × k submatrix for our completion with a maxvol
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algorithm.

There are multiple methods for doing this. If we allow our submatrix A to contain

unknowns, then we may simply run a maxvol algorithm on our initial guess M0 to choose A.

Since the entries of A change, A may not be dominant after several iterations, so we may

repeat our maxvol algorithm to choose a different A after every fixed number of steps.

On the other hand, if we insist that A should be fully known, then we may run a modified

version of the maxvol algorithm on the known entries of MΩ. One way to do this is to start

by generalizing the definition of a dominant submatrix to submatrices of partially known

matrices.

Definition 10. A fully known k × k submatrix A of a partially known matrix MΩ is called

dominant if we may not increase the volume of A by swapping either a pair of rows or a pair

of columns in MΩ.

Note that the volume of a submatrix is only defined for fully known submatrices.

Equivalently, Let C be the largest fully known nΩ × k submatrix of MΩ containing A,

and let R be the largest fully known k ×mΩ submatrix containing A. Then A is dominant

in MΩ if ‖CA−1‖∞ = 1, and ‖A−1R‖∞ = 1. Here nΩ is used to denote the height of the

largest possible known nΩ× k submatrix of MΩ containing A, and similarly mΩ denotes the

width of the largest possible k ×mΩ submatrix of MΩ containing A.

For a graph theoretical formulation, recall that for fully known matrices M , we define

Gk(M) as the graph where the nodes are the k × k submatrices of M , and we have an

edge connecting two nodes if we may obtain one corresponding submatrix form another

by swapping either one row or one column. Note that if M is an n × m matrix, then

Gk(M) ∼= J(n, k)�J(m, k), where J(n, k) is the n, k Johnson graph, and � is the graph

Cartesian product.

For a partially known matrix MΩ, we define Gk(MΩ) to be the graph with nodes corre-

sponding to fully known k× k submatrixes of MΩ, with an edge connecting two fully known
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submatrices if we may obtain one submatrix from another by swapping either one pair of

rows or one pair of columns in MΩ. Then the dominant submatrices of MΩ correspond to

the nodes of Gk(MΩ) which have locally maximal volume. In other words, the submatrices

for which the volume of all connected submatrices is non-increasing. Note that Gk(MΩ) is a

sub-graph of Gk(M) for any completion M of MΩ, which is obtained by deleting every node

and connecting edge in Gk(MΩ) whose corresponding submatrix contains an unknown entry.

Since Gk(M) is isomorphic to J(n, k)�J(m, k), then Gk(MΩ) is isomorphic to a subgraph

of J(n, k)�J(m, k).

In the special case when MΩ is an n × k partially known matrix, let nΩ be the number

of rows of MΩ where every entry is known in that row. Then Gk(MΩ) ∼= J(nΩ, k). However,

when MΩ is a general n × m matrix, Gk(MΩ) may not even be connected, since we may

not always obtain one fully known submatrix as a sequence of fully known submatrices by

swapping pairs of rows or pairs of columns.

Theorem 37. Similarly to the case of fully known matrices, the independence number

α(Gk(MΩ)) provides an upper bound to the number of dominant submatrices in Gk(MΩ)

for almost all MΩ.

Proof. Similarly to the case of fully known matrices, note that for almost all MΩ, no two

dominant submatrices may be adjacent in Gk(MΩ), since if there were two adjacent dominant

submatrices they would necessarily need to have the same volume. Since α(Gk(MΩ)) is the

largest number of possible non-adjacent nodes in Gk(MΩ), it provides an upper bound for the

number of possible dominant submatrices for almost all partially known matrices MΩ.

4.7 Maxvol on partially known matrixes

The maxvol algorithm on partially known matrices works similarly to the maxvol algorithm.

when MΩ is an n × k partially known matrix, we simply find the nΩ × k submatrix where

every row and column is known, and calculate maxvol on that submatrix.
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When M is a general n×m matrix, a corresponding alternating or greedy maxvol algo-

rithm according to previous case can be used.

This algorithm converges, since we get a sequence of submatrices with increasing volume

which are bounded above.

4.8 Perturbation Analysis

Our goal is, given MΩ =
[
A BΩ
CΩ DΩ

]
, with some fully known k× k submatrix A, we calculate a

rank r completion M with gradient descent on all r× r minors containing A. We would like

to choose A such that it is of maximum volume over all fully known k × k submatrices.

Suppose our observed entries are noisy. That is, we have MΩ = YΩ +ZΩ, where ZΩ is the

noise term with ‖ZΩ‖F < δ and YΩ are the true entries which have a rank r completion Y .

Let us first analyze the case when M = Y +Z, where Y is a rank r matrix, and ‖Z‖F < δ

is the noise term. Let Y = [ A B
C D ], and let Z =

[
ZA ZB
ZC ZD

]
. Consider the skeleton approximation:

D + ZD ∼ (C + ZC)(A+ ZA)−1(B + ZB). Note that since ZA is a small perturbation of A,

we have the approximation (A+ ZA)−1 = A−1 − A−1ZAA
−1 +O(‖ZA‖2). So we have

(C + ZC)(A+ ZA)−1(B + ZB)

=C(A+ ZA)−1B + C(A+ ZA)−1ZB + ZC(A+ ZA)−1(B + ZB)

=CA−1B + CA−1ZAA
−1B + C(A+ ZA)−1ZB + ZC(A+ ZA)−1(B + ZB) +O(‖ZA‖2)

=D + CA−1ZAA
−1B + C(A+ ZA)−1ZB + ZC(A+ ZA)−1(B + ZB) +O(‖ZA‖2)

Therefore we have

(C + ZC)(A+ ZA)−1(B + ZB)− (D + ZD)

=CA−1ZAA
−1B + C(A+ ZA)−1ZB + ZC(A+ ZA)−1(B + ZB)− ZD +O(‖ZA‖2)
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where the infinity norm is minimized when A+ ZA is chosen with maximal volume over

all possible choices of r × r submatrices of M .

4.9 Maxvol Gradient Descent

Given MΩ with initial guess M0, and an initial invertible r × r submatrix A0 of M0, we can

employ maxvol on the initial guess, followed by gradient descent. Or we could alternate

between a maxvol algoritm and gradient descent. More specifically, we have the following

algorithm.

The alternating maxvol-gradient descent algorithm runs as follows. Given MΩ a partially

known matrix, and an initial guess M0 such that PΩ(M0) = MΩ, a known invertible r × r

submatrix A0 of M0, step size h, and a tolerance ε we do the following:

While ‖CnA−1
n Bn −Dn‖ > ε

1. Let An+1 be the resulting submatrix from the maxvol algorithm on Mn with initial

submatrix in index set of An, with corresponding Bn, Cn, and Dn.

2. let fn = 1
2
‖CnA−1

n Bn −Dn‖2
F

3. Let Mn+1 = Mn − h∇fn(Mn)

Suppose Ω is a binary matrix with a 1 in position where that entry is known, and a 0 in

positions where entries are unknown. Then let Ωc be the binary matrix with a 0 in positions

where entries are known, and a 1 in position where entries are unknown. Let PΩc be the

operator which sets all entries in known positions to 0. Then in particular we have

Mn+1 = Mn − h∇fn(Mn) =

An Bn

Cn Dn

− hPΩc(

 ∂fn
∂An

∂fn
∂Bn

∂fn
∂Cn

∂fn
∂Dn

)

Where ∂fn
∂An

, ∂fn
∂Bn

, ∂fn
∂Cn

, and ∂fn
∂Dn

were calculated previously.
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4.10 Small Examples with Noise

Let MΩ be a partially known matrix with the unique rank r completion M . Let ZΩ be a

noise term with ‖ZΩ‖ < ε. Let YΩ = MΩ + ZΩ be the known entries. Then we would like to

find a completion Y of YΩ such that ‖Y −M‖ is small.

Another formulation is that we would like to find a matrix Y with σr+1(Y ) minimized and

PΩ(Y ) = YΩ. Note that σr+1(Y ) is equal to the error of Y to a closest rank r approximation.

Example 4.1. Let r = 1, MΩ =
[

2 2 2
2 2 �
2 � �

]
and ZΩ =

[
0.1 0 0
0 0.1 �
0 � �

]
. Then MΩ has the unique rank

1 completion M =
[

2 2 2
2 2 2
2 2 2

]
. However, YΩ = MΩ + ZΩ =

[
2.1 2 2
2 2.1 �
2 � �

]
has no rank 1 completion

since YΩ contains a rank 2 submatrix. However, we can complete YΩ to a matrix Y such that

σ2(Y ) is small, and that Y is close to M .

We will employ maxvol followed by gradient descent for the initial guess

Y0 =


2.1 2 2

2 2.1 0

2 0 0

 .

After 200 steps with step size 0.1, we recover the matrix

Y200 =


2.1 2 2

2 2.1 1.9042

2 1.9976 1.9045

 ,

where σ2(Y200) = 0.1147, and ‖M − Y200‖F = 0.1353. Moreover, for each n we have a plot

of σ2(Yn) in fig. 13.

We try again with the same Ω, and MΩ, but we let ZΩ consist of uniformly distributed

random numbers between 0 and 0.1. Then again, YΩ will contain a rank two submatrix with
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Figure 13: σ2 of the 3× 3 matrix Yn.

probability 1. In particular, we start with

YΩ =


2.0611 2.0107 2.0399

2.0812 2.0885 �

2.0201 � �

 ,

and after 200 steps, we recover the matrix

Y200 =


2.0611 2.0107 2.0399

2.0812 2.0885 2.0593

2.0201 2.0272 1.9985


where σ2(Y200) = 3.8546e − 02, and ‖M − Y200‖F = 1.5662e − 01. Moreover, for each n we

have the plot of σ2(Yn) in fig. 14.

4.11 Larger Examples With Noise

Once again, we will let Y be the 128 × 128 penny picture. We may consider Y as a rank r

matrix with noise. In particular we let M = PMr(Y ), and let Z = Y −M . Then given some

79



Figure 14: σ2 of the 3× 3 matrix with random noise Yn.

index of unknown entries Ω and initial guess Y0, we can run maxvol followed by gradient

descent to approximately recover M .

M will be a good approximation of Y if r is chosen large enough. In other words, if r is

chosen large enough, then ‖Z‖ will be small. Table 7 shows ‖Z‖ for some fixed r.

r ‖Z‖
10 6.0523e+02
20 1.9172e+02
30 1.1082e+02
40 6.6198e+01
50 4.3853e+01
60 3.1554e+01
70 2.2414e+01
80 1.5001e+01
90 1.0220e+01
100 6.5856e+00
110 3.7256e+00
120 1.4032e+00

Table 7: Error to closest rank r approximation of 128× 128 penny picture.

Let us choose r = 100, in which case ‖Z‖ = 6.59. We will pick Ω by randomly keep

2nr − r2 = 15600 entries, and we will set the rest equal to zero for Y0. We will set the step
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size h = 0.005, and run for 10000 steps.

Once again, we plot σr+1(Yn) vs n and get fig. 15.

Figure 15: σ101 of Yn.

As we can see, σ101(Yn) decreases from 69.48 to 21.96.

4.12 Comparing Gradient Descent to Maxvol-Gradient Descent

The reason why we use maxvol in our gradient descent method is to improve numerical

stability, speed up convergence, and allow us to take larger step sizes. As a simple example,

consider the 2 × 2 rank 1 matrix M = [ 5 5
1 1 ], with Ω = [ 1 1

1 0 ], M0 = [ 5 5
1 0.5 ], and step size

h = 0.1. If we choose our matrix A to be in either index (1, 1) or index (1, 2), then the

gradient descent method converges to M . However, if A is chosen to be the submatrix 1 in

index (2, 1), then the gradient descent method diverges. In order to obtain convergence, we

must reduce our step size to h = 0.07.

For a larger example, we once again consider the n× n penny picture with n = 128 and

integer entries between 0 and 255. We fix r = 30, 60, and 90, and we keep 2nr − r2 random
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entries and replace the rest with uniformly sampled independent random numbers between

0 and 255.

We first choose A by randomly picking r rows and r columns and run gradient descent.

We compare this to choosing A by using the maxvol algorithm and running gradient descent.

We create a semi-log plot of σr+1(Mn) for each method. We fix our step size h = 0.005 and

run for 10000 steps for each method.

Figure 16: Left: Using the penny picture, we fix r = 30. Plot of σ31(Mn) vs n for maxvol-
gradient descent and gradient descent. Middle: Using the penny picture, we fix r = 60.
Plot of σ61(Mn) vs n for maxvol-gradient descent and gradient descent. Right: Using the
penny picture we fix r = 90. Plot of σ91(Mn) vs n for maxvol-gradient descent and gradient
descent.

As we can see from fig. 16 choosing A through maxvol provides a significant improvement

compared to choosing A randomly.

We now consider the 256×256 house image with entries as integers between 0and255. In

the house picture, the 51st singular value is equal to 214.6764, and the 101st singular value

is equal to 75.2592.

We set r = 50, and 100 and randomly keep 2nr− r2 + 10000 entries, and delete the rest.

We run maxvol gradient descent by setting our step size h = 0.005 and running for 1000

steps.

First, for r = 10, we have fig. 18.
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Figure 17: 256× 256 house image used for numerical tests.

Figure 18: Left: Using the house picture, we fix r = 50. Plot of σ51(Yn) vs n for maxvol-
gradient descent and gradient descent. Right: Using the house picture, we fix r = 100. Plot
of σ101(Yn) vs n for maxvol-gradient descent and gradient descent.
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5 Maximum Volume Based Skeletal Decompositions

for Scalable Plasma Physics Applications

5.1 Motivation

Researchers within the Fusion Energy Division at ORNL aim to reduce the computational

complexity of fusion plasma simulation via construction of linear time advance operators for

multi-timescale problems. That work is based on the data-driven dynamic mode decompo-

sition (DMD) method, which has been proven to be a useful tool for the analysis of fluid

dynamics [32]. However, for high dimensional data the SVD scales poorly, on the order of

O(m2n) for n × m matrices with m ≤ n. For the ORNL application, the matrices to be

approximated are generated by the multi-fluid SOLPS code for modeling the flow of plasma

at the edge region of a fusion device [34]. A typical n × m SOLPS produced data matrix

can have n greater than 10,000 and m on the order of 100. For kinetic plasma simulations

these sizes may be much greater again.

Application of the SVD to the high dimensional data required for fusion simulation is

computationally prohibitive and alternative methods are desirable. We aim to leverage the

maxvol skeleton decomposition to allow for the extension of the ORNL projective integration

algorithm to the scales of simulation data inherent in the physics of fusion plasmas.

5.2 Simulation Data Background Information

1D data, high noise corresponds to temperature (outboard diverter target) and low noise

corresponds to density (midplane density) (outboard midplane corresponds to thickest cut

of the midsection)

Simulations at the boundary of the magnetically confined plasma in a tokamak are carried

out to compute either the exhaust (heat and particle flux) due to magnetically driven plasma
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dynamics from the core, such as deposition of escaping heat flux onto the diverter target.

The boundary also permits an accessible region for controlling this plasma through actuators

such as pellet injection or neutral gas puff. SOLPS simulates these dynamics through the

coupling of the fluid plasma equations and the kinetic monte carlo neutral equation.

kinetic monte carlo neutral equation compute the trajectories of the kinetic particles and

supply the source terms

sn continuity equation source term, sm momentum source term, sE energy source term.

dηn
dt

+ ηs∇ · Vs = sn

msηs
dVs
dt

+∇ps +∇πs − esηs(E + Vs ×B) = sm

3

2

dps
dt

+
5

2
ps∇ · Vs + πs · ∇Vs +∇ · qs = sE

Interaction between observable quantities such as temperature, density, pressure, and the

separate population of neutral particles (do not interact with large scale electric or magnetic

fields).

The system of coupled ODEs are solve implicitly and utilize a Picard iteration to converge

onto the solution. This calculation is also subject to the independent convergence of the

Monte Carlo simulation.

Each time step requires the iteration over the internal calculation of the Monte Carlo

equations that converges to a solution to the source terms of the plasma equations. With

these source terms you can then attempt to solve the odes which can be vastly different

timescales, both implicit time stepping and Picard iteration is used to obtain a solution at

sensible time steps.

If a plasma is to reach thermal equilibrium with the ions and electrons their momenta

will be orders of magnitude apart. For the fluid equations the difference in mass between
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the electrons and protons is the cause for the exhibited difference in timescales.

(Look at diego’s and david hatches paper for explanations on why compression is useful.)

5.3 Maximum Volume Skeleton Decomposition For Plasma Sim-

ulation Data Compression

Simulations are carried out for several input paramaters that can produce a high quantity

of data that prohibits efficient analysis. Not efficient to load.

We present numerical results on applying the skeleton decomposition to plasma simula-

tion data.

5.4 Dynamic Mode Decomposition Using the Skeleton Decompo-

sition

First, we will present the standard definition for the dynamic mode decomposition, or DMD,

from [32]. Consider a sequence of data vectors {z0, . . . , zm} where zk ∈ Rn for all n. We

assume that the data satisfies the linear relationship zk+1 = Azk for some matrix A. We

define the n×m matrices X = [z0 · · · zm−1] and Y = [z1 · · · zm], which satisfies Y = AX.

We will now define the psuedoinverse X+ of X. To compute the psuedoinverse, assume

X is rank r. Let X = UΣV ∗ be the SVD of X, where Σ is the r × r diagonal matrix of

non-zero singular values. Then the psuedoinverse of X is defined as X+ = V Σ−1U∗. In

general, we compute the SVD of X obtaining X = UΣV ∗, where Σ is the diagonal matrix

consisting of the singular values of X. We compute a rank r approximation Xr using the

first r singular values of X and the first r columns of U and V , obtaining

Xr = UrΣrV
∗
r

Where Ur is n× r, Vr is m× r, and Σr is the r × r diagonal matrix consisting of the first r
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singular values of X.

We then define the matrices

Ar = Y X+
r = Y VrΣ

−1
r U∗r (5)

Ãr = U∗rArUr = U∗r Y VrΣ
−1
r (6)

We would like to replace the low-rank approximation using the singular value decomposition

with a low rank approximation using the skeleton decomposition.

When computing a low-rank approximation of X, we can instead run the maxvol algo-

rithm on X obtaining an r × r dominant submatrix X� with corresponding columns C and

rows R. We then define a low-rank approximation of X as

Xr = CX−1
� R

.

We will show that many of the theorems from [32] translate to this context. Analogously

to eq. (5) and eq. (6), we define the matrices

Ar = Y X+
r = Y R+X�C

+ (7)

Ãr = C+Y R+X� = C+ArC (8)

Note that since C,X�, and R are full rank, we have that X+
r = (CX−1

� R)+ = R+X�C
+.

Moreover, since the columns of C are linearly independent, we have that C+C = Ir, where

Ir is the r × r identity matrix.

We now calculate the eigenvalues λ of Ãr and corresponding eigenvectors w, giving Ãrw =

λw.
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Then the projected skeletal DMD mode with respect to the eigenvalue λ is given by

ϕ̂ = Cw (9)

and the exact skeletal DMD mode with respect to λ is given by

ϕ =
1

λ
Y R+X�w. (10)

Define B = Y R+X�. Then in terms of B, we have Ar = BC+, Ãr = C+B, and ϕ = 1
λ
Bw.

Theorem 38. ϕ is an eigenvalue of Ar with eigenvalue λ. Moreover, every non-zero eigen-

value of Ar is also an eigenvalue of Ãr.

Proof. We have

Arϕ = (BC+)(
1

λ
Bw)

= B(
1

λ
Ãrw)

= Bw

= λ(
1

λ
Bw)

= λϕ

Moreover, ϕ 6= 0, since if ϕ = 1
λ
Bw = 0, then C+Bw = Ãrw = λw = 0, so λ = 0.

To show that every eigenvalue of Ar is an eigenvalue of Ãr, suppose λ is a non-zero
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eigenvalue of Ar with eigenvector ϕ. Let w = C+ϕ. Then we have

Ãrw = (C+B)(C+ϕ)

= C+Arϕ

= λC+ϕ

= λw.

Moreover, w 6= 0, since if w = C+ϕ = 0, then BC+ϕ = Arϕ = λϕ = 0. So λ = 0, which is a

contradiction. So λ is an eigenvalue of Ãr with eigenvector w.

Let PXr be the orthogonal projection operator onto the column space of Xr. Then since

the column space of Xr is equal to the column space of C, we have that PXr = CC+.

Theorem 39. Let ϕ̂ be defined as in eq. (9), and let ϕ be defined as in eq. (10). Then ϕ̂ is

an eigenvector of PXrAr with eigenvalue λ. Moreover, ϕ̂ = PXrϕ.

Proof. First, we have

PXrArϕ̂ = (CC+)(BC+)(Cw)

= C(C+B)Irw

= CÃrw

= λCw

= λϕ̂.
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So λ is an eigenvalue of ϕ̂. Moreover, we have

PXrϕ = (CC+)(
1

λ
Bw)

=
1

λ
CÃrw

= Cw

= ϕ̂

Note that we have made no reference to how good of an approximation X+
r is to X+.

In particular, the above argument works for any rank r approximation Xr = LR∗ of X,

regardless of the error between X and Xr, where L is an n × r full rank matrix and R is

an m × r full rank matrix. What is the error between X+ and X+
r when we choose Xr

using the SVD? Suppose rank(X) = s. Let X = UΣV ∗, and let Xr = UΣrV
∗, where

Σ = diag(σ1, . . . , σs, 0, . . . , 0) is the n × m diagonal matrix with diagonal entries equal to

the singular values of X. Similarly, let Σr = diag(σ1, . . . , σr, 0, . . . , 0) where r ≤ s. Then

X+ = V Σ−1U∗, and X+
r = V Σ−1

r U . Then we have

∥∥X+ −X+
r

∥∥ =
∥∥X+ −X+

r

∥∥
=
∥∥V Σ−1U∗ − V Σ−1

r U∗
∥∥

=
∥∥U(Σ−1 − Σ−1

r )V ∗
∥∥

=
∥∥Σ−1 − Σ−1

r

∥∥
=

∥∥∥∥diag(0, . . . , 0,
1

σr+1

, . . . ,
1

σs
, 0, . . . , 0)

∥∥∥∥
=

1

σs

where ‖·‖ is the spectral norm. This means that the error between A and Ar can get arbitrar-
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ily large as the smallest non-zero singular value σk → 0. This is because the pseudoinverse

function is discontinuous at matrices which are not full rank [35]. Moreover, this implies

that

‖A− Ar‖ =
∥∥Y X+ − Y X+

r

∥∥
≤ ‖Y ‖

∥∥X+ −X+
r

∥∥
= ‖Y ‖ 1

σk

The error between X+ and X+
r is more difficult to analyze when Xr is chosen with respect

to the skeleton approximation. In particular, if X = [ A B
C D ], then the skeleton approximation

of X with respect to a r × r nonsingular submatrix A is defined as

Xr =

A
C

A−1

[
A B

]
=

A B

C CA−1B

 .
Because A is full rank, we have

X+
r = (

A
C

A−1

[
A B

]
)+

=

[
A B

]+

A

A
C


+

=

A∗
B∗

 (AA∗ +BB∗)−1A(A∗A+ C∗C)−1

[
A∗ C∗

]
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So letting H = (AA∗ +BB∗)−1A(A∗A+ C∗C)−1, we have

X+
r =

A∗HA∗ A∗HC∗

B∗HA∗ B∗HC∗

 .
Now let SA = D − CA−1B denote the Schur complement of X with respect to A. Then

from [33], if the column space of C is contained in the column space of SA, and the row

space of B is contained in the row space of SA, then we have

X+ =

A−1 + A−1BS+
ACA

−1 −A−1BS+
A

−S+
ACA

−1 S+
A

 .
It is not so clear what the error ‖X+ −X+

r ‖ would be in this case.
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6 Tensor Theory and Background

We may generalize some of our results on matrix completion to the case of tensors, which may

be considered as high dimensional matrices or arrays. Let U be a vector space of dimension

n with basis u1, . . . , un and let V be a vector space of dimension m with basis v1, . . . , vm.

Then the tensor product U ⊗ V is the vector space of dimension nm spanned by elements

of the form ui ⊗ vj over all i and j with the following relations. For elements u and v ∈ V ,

w ∈ W , and scalar α we have

1. α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw)

2. (v + u)⊗ w = v ⊗ w + u⊗ w

3. w ⊗ (v + u) = w ⊗ v + w ⊗ u.

If W is a vector space of dimension p with basis w1, . . . , wp, then U ⊗ V ⊗W is a vector

space of dimension nmp spanned by elements of the form ui⊗ vj ⊗wk. If T ∈ U ⊗ V ⊗W is

expanded with respect to this basis, T =
∑

ijk aijkui ⊗ vj ⊗ uk, then T may be represented

as the three dimensional array [aijk].

For a tensor product of vector spaces V1⊗· · ·⊗Vd, an element T ∈ V1⊗· · ·⊗Vd is called

a tensor of degree, or order, d. We express theorems and definitions in terms of degree 3

tensors, but many may be generalized to higher degree tensors.

One of the main issues with generalizing the methods of matrix completion to tensor

completion is generalizing the notion of rank to that of tensors. There are multiple ways to

do so, but calculating the rank of a tensor is not always easy. In this section we will present

some known results on the geometry of low-rank tensors.
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6.1 Types of Tensor Ranks

The definitions and theorems from this section are from [5]. We start by reformulating the

rank of a linear map in terms of tensors.

Let U, V be vector spaces, and U∗ the dual of U . Let α ∈ U∗, and b ∈ V . Then given

α ⊗ b ∈ U∗ ⊗ V one can define a rank 1 linear map α ⊗ b : U → V by (α ⊗ b)(a) = α(a)b

where a ∈ U , and α⊗ b ∈ U∗⊗ V In more familiar terms the linear map α⊗ b, is essentially

the rank 1 matrix bα, where α is a row vector, b is a column vector.

In general, for T ∈ U∗ ⊗ V , the rank of the linear map T : U → V is the smallest r

such that there exists α1, . . . , αr ∈ U∗ and b1, . . . , br ∈ V such that T =
∑r

i=1 αi ⊗ bi. This

definition of rank agrees with the standard definitions for the rank of a matrix M , since the

rank of is equal to the fewest possible number of terms when writing M as a sum of rank 1

matrices.

We may generalize the definition of rank to tensors of any degree. To start, we will extend

the definition to bilinear operators. Let α ∈ U∗, β ∈ V ∗, c ∈ W with a ∈ U, and b ∈ V .

Then the map α ⊗ β ⊗ c : U × V → W , defined by (a, b) 7→ α(a)β(b)c is a rank 1 bilinear

map.

In general, a bilinear map of the form T : U × V → W can be represented as a sum

T (a, b) =
r∑
i=1

αi(a)βi(b)ci

for some r, where αi ∈ U∗, βi ∈ V ∗, and ci ∈ W . The smallest such r is the rank of T ,

denoted R(T ) = r.

We will generalize this definition of rank to degree 3 tensors.

Definition 11. An element T ∈ U ⊗ V ⊗W is said to have rank one if T = u ⊗ v ⊗ w,

for some u ∈ U , v ∈ V , and w ∈ W . The rank of a tensor, is the smallest r such that

T =
∑r

j=1 Zj, with each Zj rank one, and is denoted R(T ) = r.
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A tensor T ∈ U ⊗ V ⊗W may be considered as the linear maps

T (1) : U∗ → V ⊗W

T (2) : V ∗ → U ⊗W

T (3) : W ∗ → U ⊗ V.

To explain these linear maps, consider the first example T (1) : U∗ → V ⊗W . Recall that we

may represent an element in X∗ ⊗ Y as a linear map from X to Y . In this context, we set

Y = V ⊗W , and X = U∗, since U∗∗ is canonically isomorphic to U .

Each of these linear maps has a rank for which is equal to the dimension of the image of

the map. That is, the ranks are equal to dim(T (1)(U∗)), dim(T (2)(V ∗)), and dim(T (3)(W ∗))

respectively.

Definition 12. The multilinear rank, also known as the Tucker rank, of T ∈ U ⊗ V ⊗W is

denoted as Rm(T ), and is defined to be the 3-tuple of natural numbers

Rm(T ) = (rank(T (1)), rank(T (2)), rank(T (3)))

The multilinear rank of higher degree tensors is defined similarly. That is, the ith com-

ponent of the multi-linear rank is equal to the rank of the mode-i unfolding of T . Note that

for degree two tensors T ∈ U ⊗V , dim(T (U∗)) = dim(T (V ∗)) since the row rank of a matrix

is equal to its column rank.

In general, if T is an n×m× p tensor, with Rm(T ) = (r1, r2, r3), then we must have
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r1 ≤ min(mp, n)

r2 ≤ min(np,m)

r3 ≤ min(nm, p).

This is because T (1) is an mp × n matrix, T (2) is an np ×m matrix, and T (3) is an nm × p

matrix.

Another way to view the multilinear rank of degree three tensors is that it is the 3-tuple of

integers which are the maximum number of linearly independent mode-1 (column) fibers, the

maximum number of linearly independent mode-2 (row) fibers, and the maximum number

of linearly independent mode-3 (tube) fibers.

Figure 19: Fibers of a 3rd order tensor [13].

The matrix T (i) is also known as the mode-i unfolding matrix of the tensor T [6]. If T

is expanded with respect to a basis, T =
∑

jkl ajkluj ⊗ vk ⊗ wl, and is represented as a the

array [ajkl], then T (i) can be represented as a matrix by unfolding the slices of [ajkl] along

the ith coordinate.

These two definitions of the rank and the multilinear rank are related in the following
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Figure 20: Slices of a 3rd order tensor [13].

way.

Lemma 6. For any tensor T , max(Rm(T )) ≤ R(T ).

Proof. Let T ∈ U ⊗ V ⊗W , and suppose R(T ) = r. Then T may be expressed as the sum

of r rank one tensors T =
∑r

j=1 Zj for all Zj rank one. Note that dim(Zj(U
∗)) ≤ 1 for all j,

which implies that dim(T (U∗)) ≤ r, and similarly for V and W . So each component of the

multilinear rank is at most r.

One issue with the definition of the rank of a tensor is that the space of tensors with

rank at most r may not be a closed set. In other words, it may be possible to express a high

rank tensor as the limit of low rank tensors. This is in contrast to matrices, where Mr, the

space of matrices of rank at most r, is closed. To study the closure of the space of matrices

of rank at most r, we introduce the notion of the border rank. A tensor has border rank at

most r if it can be approximated by rank r tensors.

Definition 13. The border rank of a tensor T is the smallest r such that there exists a

sequence of tensors {Ti}i of rank r such that limi→∞ Ti = T , and is denoted R(T ). Equiva-

lently, the border rank of a tensor T is the smallest r such that there exists a tensor of rank

r in the ball Bε(T ) = {Tε | ‖Tε − T‖ < ε} for all ε > 0, where ‖·‖ is the Euclidean norm.
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Note that the border rank of a tensor is no more than the rank of a tensor. That is,

R(T ) ≤ R(T ). We will give an example of a tensor whose rank and border rank differ.

Example 6.1. Let T = u ⊗ u ⊗ v + u ⊗ v ⊗ u + v ⊗ u ⊗ u, where u and v are linearly

independent. Then R(T ) = 3. However, R(T ) = 2. To see this, let

Tn = n(u+
1

n
v)⊗ (u+

1

n
v)⊗ (u+

1

n
v)− n(u⊗ u⊗ u).

Then Tn is rank 2, and limn→∞ Tn = T .

We will prove by contradiction that R(T ) = 3 in the case where u = [ 1
0 ] and v = [ 0

1 ], we

will suppose rank(T ) ≤ 2. Then we can write

T =

u11

u12

⊗
v11

v12

⊗
w11

w12

+

u21

u22

⊗
v21

v22

⊗
w21

w22

 .
for some variables u11, u12, u21, u22, v11, v12, v21, v22, w11, w12, w21, w22. Comparing this with

the definition of T , we get the following system of equations:

u11v11w11 + u21v21w21 = 0 u12v11w11 + u22v21w21 = 1

u11v11w12 + u21v21w22 = 1 u12v11w12 + u22v21w22 = 0

u11v12w11 + u21v22w21 = 1 u12v12w11 + u22v22w21 = 0

u11v12w12 + u21v22w22 = 0 u12v12w12 + u22v22w22 = 0

Using the software Macaulay2, we can verify that this system of equations has no solutions.

An open question is, given a tensor T of border rank r, what is the largest rank the

tensor can have? For example, it is known that a border rank 4 tensor in C4 ⊗C4 ⊗C4 can

have rank at most 7, but in general the question is open [14].

Let σr denote the set of tensors in U ⊗ V ⊗W with rank at most r.
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Definition 14. Let the Bε(T ) = {Tε | ‖Tε − T‖ < ε} denote the ball centered at T with

radius ε. Then the generic rank of a tensor T , denoted Rg(T ), is the least r such that the

intersection Bε(T ) ∩ σr is of positive measure for all ε > 0.

Note that if r is the generic rank of T , then there exists a sequence {Ti}i where R(Ti) = r

such that limi→∞ Ti = T . Therefore the border rank of T is no larger than the generic rank

of T . That is, R(T ) ≤ Rg(T ). In general, the rank of a tensor T could be either larger or

smaller than the generic rank of T .

A rank r is a typical rank if the set of tensors of rank r in U ⊗ V ⊗W has non-zero

measure. Equivalently, r is a typical rank if it is the generic rank of some tensor T . Over C,

the typical rank is unique. Moreover, it is equal to the maximum border rank [10]. However,

over R the typical rank may not be unique.

For n × m matrices, the typical rank is min{n,m}, and is also the maximum possible

rank of any n by m matrix. For general tensors, unlike in the case of matrices, there could

be measure zero sets of tensors with rank larger than a typical rank.

It is known that the typical rank in C2 ⊗ C2 ⊗ C2 is 2. However, in R2 ⊗ R2 ⊗ R2, both

2 and 3 are typical ranks. More generally, in Rn ⊗Rm ⊗Rp, every rank between the largest

border rank and the largest rank is a typical rank. [9]

Let n = dim(U), m = dim(V ), and p = dim(W ). Note that the set of rank one tensors

in U ⊗ V ⊗W has dimension n + m + p − 2, since it is parameterized by elements u, v, w

up to scale, plus one scalar. Rank r tensors are sums of r rank one tensors, so from [10] we

have

dim(σr) ≤ r(n+m+ p− 2). (11)

To approximate the typical rank over C, since the dimension of dim(U ⊗V ⊗W ) = nmp,

by substituting nmp into the left hand side of eq. (11) we conclude that if r is the typical

rank, we have
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d nmp

n+m+ p− 2
e ≤ r.

We define the expected rank of a tensor in Cn ⊗ Cm ⊗ Cp to be d nmp
n+m+p−2

e. In general,

there is no easy way to calculate the true typical rank explicitly. However, it is known in

some cases. For example, it is known that for all n 6= 3, the typical rank of an element of

Cn ⊗ Cn ⊗ Cn is the expected d n3

3n−2
e. When n = 3, the typical rank is five [8].

Typical ranks are a useful notion, because if we have an incomplete tensor TΩ with entries

chosen from a continuous distribution, then TΩ will have a rank r completion with non-zero

probability only if r is a typical rank.

6.2 Spaces of Tensors with Rank at Most r

The definitions and theorems from this section are from [5]. In contrast to the space of

matrices with rank at most r, Mr, because we we have several notions of the rank of a

tensor, we have several ways to define spaces of tensors of rank at most r. First, we let σr

denote the space of tensors in U ⊗ V ⊗W of rank at most r. That is,

σr = {T ∈ U ⊗ V ⊗W | R(T ) ≤ r}.

Let σ̂r denote the set of tensors of border rank at most r in U ⊗ V ⊗W . That is,

σ̂r = {T ∈ U ⊗ V ⊗W | R(T ) ≤ r}.

By definition 13, σ̂r is the closure of σr. More strongly, it is the Zariski closure of σr. In other

words, σ̂r is an algebraic variety. That is, it is the zero set of a collection of polynomials. In

general, the defining equations for σ̂r are unknown. We will introduce some known results.

Other known results can be found in Chapter 7 of [5].
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Definition 15. The subspace variety Ŝubr = Ŝubr(U ⊗V ⊗W ) is the space of tensors such

that each entry of the multilinear rank is at most r. In other words, a tensor T is in Ŝubr if

and only if rank(T (i)) ≤ r for all i. So we have

Ŝubr = {T ∈ U ⊗ V ⊗W | max(Rm(T )) ≤ r}

= {T ∈ U ⊗ V ⊗W | rank(T (i)) ≤ r ∀j}.

Recall that a linear map M has rank less than or equal to r if and only if all (r+1)×(r+1)

minors of M vanish. Since we require rank(T (i)) ≤ r for all i, we have that a tensor T is in

Ŝubr if and only if all (r + 1)× (r + 1) minors of T (i) vanish for each i. Therefore, Ŝubr is a

zero set of a system of the system of polynomials which are the (r + 1)× (r + 1) minors of

all mode-i unfoldings. The minors of a tensor T can be explicitly calculated by calculating

the minors of T unfolded along each dimension.

What is the relationship between σr, σ̂r, and Ŝubr?

Theorem 40. We have the following inclusions describing the relationship between σr, σ̂r,

and Ŝubr:

σr ⊂ σ̂r ⊂ Ŝubr

which implies

max(Rm(T )) ≤ R(T ) ≤ R(T ).

Proof. Recall that if the rank of a tensor T is at most r, this implies that the maximum

multilinear rank is at most r. That is, R(T ) ≤ r implies max(Rm(T )) ≤ r. Therefore if

R(T ) ≤ r, then the (r+ 1)× (r+ 1) minors of every mode-i unfolding of T vanish. In other

words, we have σr ⊂ Ŝubr. Moreover, since Ŝubr is the zero set of a system of polynomials,
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it is a closed set, so the closure of σr, that is σ̂r, is also a subset of Ŝubr. So we have

σr ⊂ σ̂r ⊂ Ŝubr.

Since polynomials are continuous, then the limit of tensors in the zero set of a system

of polynomials must also be a zero of that system of polynomials. It follows that the (r +

1) × (r + 1) minors of the mode-i unfolding of any tensor T with border rank at most r

must vanish. T ∈ Ŝubr is a necessary, but not always a sufficient condition to imply T ∈ σ̂r.

However, it is sufficient when r = 1. Moreover, it is sufficient to imply T ∈ σ1 [5]. That is,

we have

σ1 = σ̂1 = Ŝub1(U ⊗ V ⊗W ). (12)

6.3 Tensor Rank Computation and Low-Rank Approximations

We will now discuss how to explicitly compute different tensor ranks.

The easiest type of rank to compute is the multilinear rank. We simply compute the rank

of the mode-i unfolding matrix T (i) for all i by unfolding the tensor in all three directions.

The border rank is difficult to compute in practice, since R(T ) = min{R(t), t ∈ B(T, ε)}

for arbitrary ε, where B(T, ε) is the ball with center T and radius ε. In theory, since the set

of tensors of border rank at most r is an algebraic variety, then there exists a finite number

of polynomial equations such that if T is in the zero set of all such equations, then T has

border rank at most r. We could use these equations to find the border rank, however, these

equations are not all known in general. For necessary conditions, we may check that the

maximum component of the multilinear rank is at most r.

To compute the rank of a tensor T ∈ U ⊗ V ⊗W , we need to find the smallest r such

102



that T can be written as a sum of r rank 1 tensors. For example, to check if an n × n × n

tensor T can be written as a sum of r rank one tensors for some r, assume we can express

T =
∑r

i=1 Zi, where each Zi = ui ⊗ vi ⊗ wi, where the n × 1 vectors ui, vi, and wi have

variable components. We expand
∑r

i=1 Zi into an n× n× n tensor, which should have 3nr

variables, and set that equal to the known entries in T. This will give us n3 equations, which

can be solved for example using Gröbner bases for example. If there is a solution, then T

has rank at most r. If there is no solution then T has rank greater than r.

We may attempt to calculate a closest rank r approximation problem with respect to

some tensor norm. That is, given T ∈ U ⊗ V ⊗W , we would like to find a solution to

min
ui,vi,wi

∥∥∥∥∥T −
r∑
i=1

ui ⊗ vi ⊗ wi

∥∥∥∥∥
s.t. ui ∈ U, vi ∈ V,wi ∈ W

i In other words, we would like to solve

min
R(Tr)≤r

‖T − Tr‖

with Tr ∈ σr. Note that in the case of matrices, this problem is solved with respect to any

unitary invariant norm by zeroing out small singular values by the Eckart–Young theorem

[25]. However, for the case of tensors with order at least three, this problem is ill-posed [11].

This is because σr, the set of tensors of rank at most r, is not a closed set. Recall from

example 6.1 that we have the sequence of rank 2 tensors {Tn}∞n=1 which converges to a rank

3 tensor, where

Tn = n(u+
1

n
v)⊗ (u+

1

n
v)⊗ (u+

1

n
v)− n(u⊗ u⊗ u).

and limn→∞ Tn = T = u⊗u⊗ v+u⊗ v⊗u+ v⊗u⊗u. Therefore, T does not have a closest
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rank 2 approximation, since there exist rank 2 tensors arbitrarily close to T . Even worse,

the norms of the individual rank one terms are unbounded. That is,

lim
n→∞

∥∥∥∥n(u+
1

n
v)⊗ (u+

1

n
v)⊗ (u+

1

n
v)

∥∥∥∥ =∞

and

lim
n→∞

‖n(u⊗ u⊗ u)‖ =∞.

This is sometimes called the problem of diverging components [12]. One workaround when

trying to compute a low-rank approximation is to impose additional constraints that bound

the norms of the rank one components.
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7 Tensor Completion

Similar to matrix completion, the problem of tensor completion is, given a partially known

tensor TΩ, complete the unknown entries of TΩ subject to the constraint that the resulting

tensor is low rank. There are multiple notions of low rank for tensors, for example the tensor

could have low rank, low border rank, or low max multilinear rank.

Let U, V,W be vector spaces of dimension n,m, p respectively, and let Ω denote the

known index set of known entries of our tensor. Let TΩ denote a partially known tensor,

and let PΩ : U ⊗ V ⊗W → U ⊗ V ⊗W denote the projection of a tensor T such that PΩ(T )

fixes known entries with indices in Ω, and zeros out other entries. Also let AΩ = P−1
Ω (TΩ)

be the linear variety of any possible completion of TΩ. Then the goal of tensor completion

is to find a solution to the minimization problem

min
T∈U⊗V⊗W

rank(T )

s.t. PΩ(T ) = TΩ

where the rank function is either the rank, border rank, or max multilinear rank of T . Similar

to matrix completion, the problem of tensor completion is, given a partially known tensor

TΩ, we would like to fill in the missing entries of TΩ such that the resulting tensor is low

rank. We have introduced various notions of low rank for tensors. In particular, a tensor

could have low rank, low border rank, or low maximum multilinear rank. The issue with

the rank of a tensor is that the set of tensors of rank at most r is not closed, and the rank

of a tensor is difficult to compute. The issue with the border rank is that the equations

which define the space of tensors of border rank at most r are not completely known, and

the border rank is difficult to compute. In this section, we will complete tensors with respect

to the condition that the maximum component of their multilinear rank is small.
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Recall that there is a relationship between rank, border rank, and multilinear rank. In

particular, σr the set of tensors of rank at most r, is contained in σ̂r, the set of tensors of

border rank at most r, which is contained in Ŝubr, the set of tensors of maximum multilinear

rank at most r. Therefore, given TΩ, if there exists a rank at most r completion, and there

exists a unique maximum multilinear rank r completion, then the rank at most r completion

is unique.

More formally, we have the following theorem.

Theorem 41. Given TΩ, suppose AΩ ∩ σr is non-empty. That is, there exists at least one

rank at most r completion of TΩ. Suppose there exists a unique multilinear rank at most r

completion T of TΩ. That is, suppose AΩ ∩ Ŝubr = {T}. Then AΩ ∩ σr = {T}. Similarly, if

AΩ ∩ Ŝubr = {T} and AΩ ∩ σ̂r is non-empty, then AΩ ∩ σ̂r = {T}.

Proof. Since σr ⊂ σ̂r ⊂ Ŝubr, we have

AΩ ∩ σr ⊂ AΩ ∩ σ̂r ⊂ AΩ ∩ Ŝubr = {T}.

Then by assumption since there is at least one border rank or multilinear rank at most r

completion, we must have AΩ ∩ σr = {T} and AΩ ∩ σ̂r = {T}.

In this section we will provide sufficient conditions for there to be a unique multilinear

rank (r, r, r) completion of TΩ.

7.1 Exact Low Multilinear Rank Tensor Completion

We will introduce sufficient conditions for an incomplete degree 3 tensor TΩ to have a unique

multilinear rank (r, r, r) completion.

First, we will introduce sufficient conditions for an incomplete tensor to have a unique

multilinear rank (1, 1, 1) completion. In this case when r = 1, this is equivalent to an

incomplete tensor having a unique rank 1 completion.
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Theorem 42. Given TΩ, suppose Ti,1,1 is known for all i, T1,j,1 is known for all j, and T1,1,k

is known for all k, and suppose T1,1,1 6= 0. If AΩ ∩ Ŝub1(U ⊗ V ⊗W ) is non-empty, then TΩ

has a unique rank 1 completion.

Proof. Since Ŝub1(U ⊗V ⊗W ) = {T ∈ U ⊗V ⊗W | rank(T (j)) ≤ 1 ∀j}, then the equations

that furnish Ŝub1(U ⊗ V ⊗W ) are the zero sets of all 2× 2 minors of the mode-1, mode-2,

and mode-3 unfoldings.

T (1) : U∗ → V ⊗W

T (2) : V ∗ → U ⊗W

T (3) : W ∗ → U ⊗ V.

In other words, the equations are the zero set of all 2× 2 minors of the unfoldings of T into

a matrix along each mode. By assumption, the entry Tijk in TΩ is known if exactly two or

more indices in (i, j, k) are to 1.

First, we will show that we can recover all entries with one index in (i, j, k) equal to 1.

That is, we can recover all entries of the form T1jk, Ti1k, or Tij1.

Note that the equations of flattening give us equations of the form

∣∣∣∣∣∣∣
T111 T11k

T1j1 T1jk

∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣
T111 T11k

Ti11 Ti1k

∣∣∣∣∣∣∣ = 0

∣∣∣∣∣∣∣
T111 T1j1

Ti11 Tij1

∣∣∣∣∣∣∣ = 0
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for all i, j, and k. Here the bottom-right entry of each matrix is unknown and all other

entries are known. Moreover since T111 6= 0, we may solve for each unknown entry which is

equal to

T1jk =
T11kT1j1

T111

Ti1k =
T11kTi11

T111

Tij1 =
Ti11T1j1

T111

.

Next, we may complete an arbitrary entry Tijk by considering the equation of flattening

∣∣∣∣∣∣∣
T111 T1jk

Ti11 Tijk

∣∣∣∣∣∣∣ = 0

and solving for Tijk =
T1jkTi11

T111
.

Again, from eq. (12) we have σ1 = σ̂1 = Ŝub1(U ⊗V ⊗W ). So TΩ also has a unique rank

one completion which is equal to the constructed completion T .

Example 7.1. Consider Ω as above, and suppose Tijk = 1 for all (i, j, k) ∈ Ω. Then TΩ has

the unique rank 1 completion, border rank 1 completion, and multilinear rank 1 completion

T , where Tijk = 1 for all (i, j, k). T may also be written in the rank one form

T =


1

...

1

⊗


1

...

1

⊗


1

...

1

 .

We now generalize this theorem for r ≥ 1.
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Figure 21: An incomplete tensor TΩ, with known subtensors A, B, C, and D.

Theorem 43. Given TΩ, suppose that for an index (i, j, k), if there are two or more of i, j,

or k less than or equal to r, then (i, j, k) ∈ Ω. Let A denote the r × r × r known subtensor

of TΩ consisting of entries with indices (i, j, k) where i ≤ r, j ≤ r, and k ≤ r. Suppose A

has multilinear rank equal to (r, r, r). Also, suppose AΩ∩ Ŝubr is non-empty. Then TΩ has a

unique multilinear rank (r, r, r) completion T ∈ AΩ ∩ Ŝubr. Moreover, if AΩ ∩ σr or AΩ ∩ σ̂r

are non-empty, then T is a rank r or border rank r completion of TΩ respectively.

Proof. Since Ŝubr = {T ∈ U ⊗ V ⊗W | rank(T (j)) ≤ r ∀j}, the equations that furnish Ŝubr

are the zero sets of all (r + 1)× (r + 1) minors of each mode-i unfolding

T (1) : U∗ → V ⊗W

T (2) : V ∗ → U ⊗W

T (3) : W ∗ → U ⊗ V.

In other words, the equations that furnish Ŝubr are the (r+1)× (r+1) minors of the mode-i

unfoldings of T for all i.

Let TΩ be given as in theorem 43. Let B denote the known subtensor of TΩ consisting

of entries with indices (i, j, k) such that i ≤ r, j > r, and k ≤ r. Let C denote the known

subtensor of TΩ consisting of entries with indices (i, j, k) such that i > r, j ≤ r, and k ≤ r.

Let D denote the known subtensor of TΩ consisting of entries with indices (i, j, k) such that
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i ≤ r, j ≤ r, and k > r.

First, we will show that we may complete entries Tijk where exactly one of j or k is

less than or equal to r by using the mode-1 unfolding. Then, we will complete the rest of

the entries by using the mode-2 unfolding. Since the known subtensor A has multilinear

rank (r, r, r), the mode-1 unfolding A(1) has at least one rank r submatrix. Choose a rank

r submatrix of A(1), and denote it AJ . Define J = {(jα, kα)}1≤α≤r as the set of r pairs of

indices such that the entry in position (i, α) of AJ is equal to Tijαkα .

Let G denote the subtensor of T with entries Tijk such that k ≤ r, i > r, and j > r.

Then each entry Tijk of G is unknown, and there is a (r + 1) × (r + 1) submatrix of the

mode-1 flattening of TΩ of the form

AJ bjk

ciJ Tijk


where bjk = [Tljk]1≤l≤r is the r × 1 submatrix of B(1) consisting of entries of the form Tljk,

with j and k fixed, and l ranging from 1 to r. Also ciJ = [Tijαkα ]1≤α≤r is the 1×r submatrix of

C(1) where i is fixed, and (jα, kα) ∈ J with α ranging from 1 to r. Since every (r+1)×(r+1)

minor of T (1) must vanish, and since AJ is invertible, we may set the determinant of this

submatrix equal to zero and solve for Tijk, getting Tijk = ciJA
−1
J bjk, which completes G.

Let E denote the subtensor of T with entries Tijk such that j ≤ r, i > r, and k > r.

Then Tijk is unknown, and there is a (r+ 1)× (r+ 1) submatrix of the mode-1 flattening of

TΩ of the form AJ djk

ciJ Tijk


where djk = [Tljk]1≤l≤r is the r×1 submatrix of D(1) consisting of entries of the form Tljk, with

j and k fixed, and l ranging from 1 to r. Again, setting the determinant of this submatrix

equal to zero we may solve for Tijk, getting Tijk = ciJA
−1
J djk, which completes E.
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Now we consider the mode-2 unfolding of TΩ. Again, since A has multilinear rank (r, r, r),

the mode-2 unfolding A(2) has at least one rank r submatrix. Choose a rank r submatrix of

A(2), and denote it AI . Define I = {(iβ, kβ)}1≤β≤r as the set of r pairs of indices such that

the entry in position (j, β) of AI is equal to Tiβjkβ .

Let F denote the subtensor of T with entries Tijk such that i ≤ r, j > r, and k > r.

Then each entry Tijk of F is unknown, and there is a (r + 1) × (r + 1) submatrix of the

mode-2 flattening of TΩ of the form

AI dik

bjI Tijk


where dik = [Tilk]1≤l≤r is the r×1 submatrix of D(2) consisting of entries of the form Tilk, with

i and k fixed, and l ranging from 1 to r. Also bjI =
[
Tiβjkβ

]
1≤β≤r is the 1 × r submatrix of

B(2) where j is fixed, and (iβ, kβ) ∈ I with β ranging from 1 to r. Since every (r+1)×(r+1)

minor of T (2) must vanish, and since AI is invertible, we may set the determinant of this

submatrix equal to zero and solve for Tijk, getting Tijk = bjIA
−1
I dik which completes F .

Finally, let H denote the subtensor of T with entries Tijk such that i > r, j > r, and

k > r. Then each entry Tijk of H is unknown, and there is a (r + 1)× (r + 1) submatrix of

the mode-2 flattening of TΩ of the form

AI eik

bjI Tijk


where eik = [Tilk]1≤l≤r is the r×1 submatrix of E(1) consisting of entries of the form Tilk, with

i and k fixed, and l ranging from 1 to r. Again setting the determinant of this submatrix

equal to zero we may solve for Tijk, getting Tijk = bjIA
−1
I eik, which completes H, and finishes

completing TΩ.
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Note that every tensor in AΩ ∩ Ŝubr must be in the zero set of the system of equations

used to solve for our completion T . Since each equation had a unique solution, each unknown

entry is uniquely determined, and since AΩ ∩ Ŝubr is non-empty, our completion T exists

and is unique. Moreover, since T ∈ Ŝubr, each component of the multilinear rank is at most

r. Also, since A is a subtensor of T , and Rm(A) = (r, r, r), then each component of the

multilinear rank of T is at least r, so Rm(T ) = (r, r, r)

Also note that by theorem 41, if AΩ ∩ σr is non-empty, then T is a rank at most r

completion of TΩ, and since max(Rm(T )) = r ≤ R(T ) ≤ r, the rank of T is equal to r.

Similarly, if AΩ ∩ σ̂r is non-empty, then T is a border rank r completion of TΩ.

In total r2(n + m + p)− r3 of nmp entries are known. This is an improvement from [7]

in which O(nr2 + r4) known entries are required. This gives us the following corollary.

Corollary 2. Given an n×m× p partially known tensor TΩ, if the positions of the entries

in Ω are distributed correctly, and AΩ ∩ Ŝubr is non-empty, then knowing r2(n+m+ p)− r3

entries in TΩ is a sufficient condition for TΩ to have a unique completion in Ŝubr.

Note that there were entries in A that we did not use to compute unknown entries, we

only used entries in AJ and AI . Moreover, we did not use the fact that the mode-3 unfolding

of A is rank r, so it should be possible to express a similar unique tensor completion theorem

under weaker assumptions.

We will now construct an explicit multilinear rank (2, 2, 2) completion as an example of

theorem 43.

Example 7.2. Consider the partially known 3× 3× 3 tensor TΩ from fig. 22. Note that any

way to unfold TΩ results in an incomplete row or column. Therefore unfolding TΩ in one way

is not sufficient to complete TΩ, we must unfold TΩ in multiple ways.

We will construct a multilinear rank (2, 2, 2) completion T of TΩ. Note that the subtensor,

A = [Tijk] with i, j, k ≤ 2, is fully known and has multilinear rank (2, 2, 2). Moreover, Tijk
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Figure 22: 3× 3× 3 incomplete tensor TΩ from example 7.2 with unkown entries Tijk.

1 1

1 1
2 1

1 1

Figure 23: The 2× 2× 2 known subtensor A of TΩ with multilinear rank (2, 2, 2).

is known if two or more of i, j, or k are at most 2. Therefore, we may use theorem 43 to

attempt to construct a unique multilinear rank (2, 2, 2) completion of TΩ.

Consider the mode-1 unfoldings of TΩ and A

T
(1)
Ω =


2 1 1 1 1 1 1 1 T133

1 1 1 1 1 1 1 1 T233

1 1 T331 1 1 T332 T313 T323 T333



A(1) =

 2 1 1 1

1 1 1 1
.
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First, we recover T331, T332, T313, and T323 by solving the equations of the form

∣∣∣∣∣∣∣∣∣∣
2 1 1

1 1 1

1 1 Tijk

∣∣∣∣∣∣∣∣∣∣
= 0 (13)

getting Tijk = 1. Next, we consider the mode-2 unfolding of TΩ,

T
(2)
Ω =


2 1 1 1 1 1 1 1 T313

1 1 1 1 1 1 1 1 T323

1 1 T133 1 1 T233 T331 T332 T333

 .

Filling in the completed entries from the mode-1 unfolding, we get

T (2) =


2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 T133 1 1 T233 1 1 T333

 .

We may now recover entries T133, T233, and T333 similarly to eq. (13). There also exists a

rank two completion of TΩ, and so our completed tensor T is also rank two, and border rank

two. That is, we have

T =


1

0

0

⊗


1

0

0

⊗


1

0

0

+


1

1

1

⊗


1

1

1

⊗


1

1

1


If TΩ may be permuted to the appropriate form, theorem 43 gives a constructive way

to complete TΩ to a multilinear rank (r, r, r) completion, assuming one exists. Here we will

more explicitly express this tensor completion algorithm. Recall that T is partitioned into

the following subtensors.
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Subtensor of T Indices Tijk with

A i ≤ r, j ≤ r, k ≤ r

B i ≤ r, j > r, k ≤ r

C i > r, j ≤ r, k ≤ r

D i ≤ r, j ≤ r, k > r

E i > r, j ≤ r, k > r

F i ≤ r, j > r, k > r

G i > r, j > r, k ≤ r

H i > r, j > r, k > r

Then if TΩ satisfies the assumptions under theorem 43, we have the following algorithm

to complete TΩ into a multilinear rank (r, r, r) tensor. Suppose TΩ is a n ×m × p partially

known tensor.

1. Find a full rank r× r submatrix AJ of A(1). Define J = {(jα, kα)}1≤α≤r as the set of r

pairs of indices such that the entry in position (i, α) of AJ is equal to Tijαkα .

2. Let CJ denote the (n− r)× r submatrix of C(1) such that the entry in position (i, α)

of CJ is equal to the entry of T in position (i+ r, jα, kα).

3. Set G(1) = CJA
−1
J B(1).

4. Set E(1) = CJA
−1
J D(1).

5. Refold E(1) and G(1) to obtain E and G.

6. Find a full rank r × r submatrix AI of A(2). Define I = {(iβ, kβ)}1≤β≤r as the set of r

pairs of indices such that the entry in position (j, β) of AI is equal to Tiβjkβ .

7. Let BI denote the (m− r)× r submatrix of B(2) where the entry in position (j, β) of

BI is equal to the entry of T in position (iβ, j + r, kβ).
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8. Set F (2) = BIA
−1
I D(2).

9. Set H(2) = BIA
−1
I E(2).

10. Refold F (2) and H(2) to obtain F and H, and assemble E,F,G, and H to complete T .

Do analogous algorithms work to complete higher order tensors? We conjecture yes.

Conjecture 1. Given an order d > 3 partially known n1 × · · · × nd tensor TΩ and given an

index (i1, . . . , id), if there are d− 1 or more entries less than or equal to r, then (i1, . . . , id)

is in Ω. Suppose the known subtensor A = [Ti1···id ] , ij ≤ r for all j has multilinear rank

equal to (r, . . . , r), and suppose also that there exists at least one multilinear rank (r, . . . , r)

completion of TΩ. Then TΩ has a unique multilinear rank (r, . . . , r) completion.

This means that in total (
∑d

i=1 ni)r
d−1−(d−1)rd entries are known out of

∏d
i=1 ni entries

total. In this case, the expected way to recover T from TΩ is to first complete entries with

index of the form (i1, . . . , id) where at least d− 2 entries are at most r, then recover entries

with indices where at least d− 3 entries are at most r, and so on.

7.2 Generalizing the Schur Gradient Descent Method to Tensors

We now generalize the Schur gradient descent method from section 4 to the case of degree

three tensors. Let TΩ be a partially known tensor. Suppose for an index (i, j, k), if each of

i, j, and k are at most r, then (i, j, k) ∈ Ω. Call A the known subtensor A = [Tijk] where

each of i, j, and k are at most r. Our goal is to find a tensor T of multilinear rank (r, r, r)

such that PΩ(T ) = TΩ. We will cast this as a minimization problem.

Recall that T ∈ U ⊗ V ⊗W can be unfolded in the following three ways as linear maps
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DΩ FΩ

EΩ HΩ

A BΩ

CΩ GΩ

Figure 24: Incomplete tensor TΩ, with known r× r× r known subtensor A with multilinear
rank (r, r, r), and partially known subtensors BΩ, CΩ, DΩ, EΩ, FΩ, GΩ, HΩ.

T (1) : U∗ → V ⊗W

T (2) : V ∗ → U ⊗W

T (3) : W ∗ → U ⊗ V

If T has multilinear rank (r, r, r), this means that each of these linear maps has rank r.

Similarly, we have the mode-1, mode-2, and mode-3 unfoldings of A. By assumption, A has

multilinear rank (r, r, r), which means each of these linear maps has full rank r, and thus

each one contains an r × r invertible submatrix. We run maxvol on each of these three

flattenings of A and record the resulting dominant submatrices with non-zero determinant

denoted A
(1)
� , A

(2)
� , and A

(3)
� respectively.

In terms of the Schur complement, we want to find a solution to the minimization problem

min
T

(
1

2

∥∥∥S(1)
A�

∥∥∥2

+
1

2

∥∥∥S(2)
A�

∥∥∥2

+
1

2

∥∥∥S(3)
A�

∥∥∥2

) (14)

s.t. PΩ(T ) = TΩ

where S
(i)
A�

denotes the Schur complement of T (i) with respect to A
(i)
� . Note that the objective

function is the sum of squares of norms, so it is non-negative. Therefore, if the objective
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function is equal to zero, T is a minimizer.

Theorem 44. Given a tensor T such that PΩ(T ) = TΩ, the objective function in minimiza-

tion 14 is equal to zero if and only if the multilinear rank of T is equal to (r, r, r).

Proof. T has multilinear rank (r, r, r) if and only if rank(T (i)) = r for all i, if and only if

the Schur complement T (i)/A
(i)
� = 0 for all i, if and only if the objective function is equal to

zero.

To calculate a minimizer T , we may employ a gradient descent method similarly to the

Schur gradient descent method in section 4.

7.3 Algebraic Combinatorics of Low-Rank Tensor Completion

A hypergraph is a pair (V,E) where V are the vertices and E ⊂ P(V ) are the hyperedges

which consist of any number of vertices. Here P(V ) denotes the power set of V . A 3-

partite hypergraph is a hypergraph where the vertices are partitioned into 3 sets, and each

hyperedge contains one vertex from each set. We may model Ω as a 3-partite hypergraph

HΩ = (VΩ, EΩ). Suppose Ω is an n×m× p binary tensor, where a 1 in entry (i, j, k) means

that corresponding entry is known, and a 0 in entry (i, j, k) means corresponding that entry

is unknown. Let VΩ consist of three groups of vertices

VΩ = {x1, . . . , xn} ∪ {y1, . . . , ym} ∪ {z1, . . . , zp}

Suppose there is an edge {xi, yj, zk} ∈ EΩ if and only if entry (i, j, k) in Ω is equal to one.

Then there is a one to one correspondence between 3-partite hypergraphs and 3rd order

masks Ω by mapping Ω to HΩ Moreover, the adjacency tensor of HΩ is equal to Ω.

We may generalize some of the notions from the combinatorics of matrix completion in

section 2.8 to the combinatorics of tensor completion.
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1

2

1

1 2

Figure 25: Hypergraph of indices of a 2× 2× 2 tensor with one hyperedge corresponding to
the known entry (1, 1, 1) in Ω.

Definition 16. Given a mask Ω, we say an index (i, j, k) in Ωc is finitely completable in r if

entry (i, j, k) of the partially known tensor PΩ(T ) has finitely many completions for generic

T ∈ Ŝubr. We define the rank r finitely completable closure clr(Ω) as the set of indices

which are finitely completable in Ω.

In terms of the rank r finitely completable closure clr(Ω), we may reformulate theorem 43

as follows.

Theorem 45. Given Ω, suppose if there are two or more entries of (i, j, k) less than or equal

to r, then (i, j, k) ∈ Ω. Then cl(Ω) is equal to Ω ∪ Ωc.

Proof. Given Ω, suppose if there are two or more entries of (i, j, k) less than or equal to

r, then (i, j, k) ∈ Ω. We have shown in theorem 43 that for T ∈ Ŝubr, if the subtensor

A = [Tijk] , 1 ≤ i, j, k ≤ r has multilinear rank equal to (r, r, r), then PΩ(T ) can be uniquely

completed to T . Note that for a generic T , A is also generic, which implies any mode-i

unfolding A(i) of A is full rank r. So A(i) will contain a rank r submatrix almost surely

for all i. Therefore, the subtensor A will have multilinear rank (r, r, r) almost surely. So a

generic tensor T will have subtensor A with multilinear rank equal to (r, r, r), which means

PΩ(T ) can be uniquely completed to T , and so every entry is finitely completable.

We may also generalize the unique completability closure to the case of tensors.
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Definition 17. Similarly to the rank r finitely completable closure clr(Ω), we define the rank

r uniquely completable closure uclr(Ω) as the set of positions which are uniquely completable

in Ω with respect to Ŝubr for a generic tensor T ∈ Ŝubr.

Moreover, from theorem 43 we have that the uniquely completable closure equals the

finitely completable closure.

Theorem 46. Given Ω as in theorem 43, then we have uclr(Ω) = clr(Ω) = Ω ∪ Ωc.

Since we have already shown that for a generic tensor T ∈ Ŝubr, PΩ(T ) will have a unique

completion in Ω, the result that uclr(Ω) = clr(Ω) = Ω ∪ Ωc follows.
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8 Notation and Glossary

• Mn×m is the set of matrices with n rows and m columns over R or C.

• M> is the transpose of the matrix M .

• M∗ is the conjugate transpose of the matrix M .

• Mij is the entry of the matrix M with index (i, j).

• Tijk is the element in index (i, j, k) of the 3rd order tensor T .

• M(i, :) is the ith row of the matrix M .

• M(:, j) is the jth column of the matrix M .

• [n] = {1, . . . , n} is the set of integers 1 through n.

• MI,J is the submatrix of M specified by the sets of indices I ⊂ [n], J ⊂ [m].

• Mr is the set of n×m matrices with rank equal to r.

• Mr is the set of n×m matrices with rank at most r.

• Ω is a matrix or tensor mask which consists of the index set of known entries. It may

also be considered as a binary matrix or tensor with a 1 corresponding to a known

entry, and a 0 corresponding to an unknown entry.

• PΩ(X) is the projection of any matrix or tensor X obtained by setting entries with

indices not in Ω equal to zero.

• ΦΩ(M) :Mr → Mn×m is the restriction of PΩ to the set Mr. In other words, ΦΩ(M)

is the projection of a matrix M ∈ Mr obtained by setting entries with indices not in

Ω equal to zero.
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• MΩ is a partially known matrix with known entries Mij in index (i, j) ∈ Ω and zeros

elsewhere.

• TΩ is a partially known 3rd order tensor with known entries Tijk in index (i, j, k) ∈ Ω

and zeroes elsewhere.

• AΩ = {X ∈Mn×m | PΩ(X) = MΩ} is the linear affine space of all possible completions

of MΩ or TΩ.

• det(M) is the determinant of the matrix M .

• vol(M) is the volume of the matrix M , which is equal to the absolute value of the

determinant of M .

• rank(M) is the rank of the matrix M .

• σi is the ith singular value of a matrix M .

• ‖X‖ is the Euclidean norm of the matrix or tensor X unless otherwise specified.

• |S| is the cardinality of the set S.

• diag(x1, . . . , xn) is the diagonal matrix with diagonal entries equal to x1, . . . , xn.

• � is a missing element of a matrix. In the context of graphs, � is used to denote the

graph Cartesian product.

• A� is a dominant submatrix of a matrix M .

• A� is a maximum volume submatrix of a matrix M .

• SA is the Schur complement of the matrix M with respect to a submatrix A.

• M+ is the psuedoinverse of the matrix M .
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• vec(X) is the vectorization of the matrix or tensor X.

• R(T ) is the rank of the tensor T .

• R(T ) is the border rank of the tensor T .

• Rm(T ) is the multilinear rank of the tensor T .

• Rg(T ) is the generic rank of the tensor T .

• σr is the set of tensors in U ⊗ V ⊗W with rank at most r.

• σ̂r is the set of tensors in U ⊗ V ⊗W with border rank at most r.

• Ŝubr is the set of tensors in U ⊗ V ⊗W such that each component of the multilinear

rank is at most r.
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