Syllabus for Mat2250, Fall, 2010

Instructor: Ming-Jun Lai

Office: Room 540 Boyd Graduate Studies Building

Classroom: Boyd Grad Studies Room 323

Classtime: 1:25p-2:15pm Monday, Wednesday and Friday

Thursday 9:30am-10:45am

Office Hours: 2:30–3:30pm Monday, Wednesday and Friday or by appointment

Email Address: mjlai@math.uga.edu

Webpage: www.math.uga.edu/~mjlai/teaching.html

Phone Number: 542–2065

Text: Hass, Weir, and Thomas, University Calculus

Course Objectives

We learn how to compute limits, derivatives, and anti-derivatives of functions and how to use these concepts to do application problems. We shall also learn how to integrate a function for various functions.

Academic Honesty

As a University of Georgia student, you have agreed to abide by the Universitys academic honesty policy, A Culture of Honesty, and the Student Honor Code. All academic work must meet the standards described in A Culture of Honesty found at: www.uga.edu/honesty. Lack of knowledge of the academic honesty policy is not a reasonable explanation for a violation. Questions related to course assignments and the academic honesty policy should be directed to the instructor.

$\underline{\text{Dates}}$	<u>Section</u>	<u>Topics and Recommended Exercises</u>	
Chapter 2: Limits and Continuity			
8/16M	$\S 2.1$	Rates of Change and Tangents to Curves	
	$\S 2.1$	#1, 3, 7, 8, 11, 12, 15, 19	
8/18W	$\S 2.2$	Limit of a Function and Limit Laws	
	$\S 2.2$	#1, 2, 3, 5, 9, 13, 19, 21, 22, 25, 27, 29	
8/19T	§2.2:	#34, 35, 36, 39, 42, 49, 57, 64, 68, 69, 85	
8/20F	$\S 2.4$	One-Sided Limits and Limits at Infinity	
	$\S 2.4$	#1, 2, 7, 10, 12, 17, 19, 20, 21, 23, 25, 27	
8/23M	$\S 2.4$:	# 34, 35, 39, 43, 47, 49, 51, 55, 69, 74 (HW DUE)	
8/25W	$\S 2.5$	Infinite Limits and Vertical Asymptotes	
	$\S 2.5$	#1, 3, 9, 13, 14, 17, 18, 19, 23, 31, 35, 39, 42, 43, 44	
8/26T	$\S 2.6$	Continuity	
	$\S 2.6$	#1-4, 5-10, 11, 12, 13, 19, 25	
8/27F	$\S 2.6$	#35, 36, 39, 46, 47, 58	
8/30M	$\S 2.7$	Tangents and Derivatives at a Point	
	$\S 2.7$	#1, 5, 7, 11, 13, 18, 23, 27, 28, 29, 30	
9/1W		Review for Test I	
•		Additional and Advanced Exercises: #4, 5, 6, 14, 21	
9/2T		Test I and (HW DUE)	

Chapter 3: Differentiation

```
9/3F
          \S 3.1
                    The Derivative as a Function
          §3.1
                    #1, 3, 6, 9, 10, 13, 17, 27–30, 31, 33, 43, 44
9/8W
          \S 3.2
                    Differentiation Rules for Polynomials, Exponentials, Products, and
                    Quotients
          \S 3.2
                    #1, 3, 5, 7, 11, 15
9/9T
          \S 3.2
                    # 17, 18, 21, 23, 24, 27, 28,29, 33
9/10F
          \S 3.2
                    # 35, 39, 43, 47, 49, 50, 53, 58, 62, 63
9/13M
          §3.3
                    The Derivative as a Rate of Change
          §3.3
                    #1, 5, 7, 10, 11, 15 (HW DUE)
9/15W
          §3.3
                    17, 18, 21, 23, 26, 29
9/16T
          \S 3.4
                    Derivatives of Trigonometric Functions
          \S 3.4
                    #1, 5, 8, 9, 11, 13, 16, 20, 25, 27, 35, 37, 47
                    The Chain Rule and Parametric Equations [N.B. Skip parametric for-
9/17F
          \S 3.5
                    mula for d^2y/dx^2.
                    #1, 3, 5, 9, 11, 15, 17, 19, 24, 27, 31, 35, 41, 45, 47
          \S 3.5
9/20M
          \S 3.5
                    #50, 51, 55, 57, 59, 61, 71, 73, 81, 83, 86, 95, 99, 112, 115 (HW DUE)
9/22W
          §3.6
                    Implicit Differentiation
          \S 3.6
                    \#1, 5, 11, 17, 19, 25, 39, 44, 51
9/23T
          \S 3.7
                    Derivatives of Inverse Functions and Logarithms
          \S 3.7
                    \#3, 11, 13, 21, 25, 27, 29, 32, 41, 51
9/24F
          \S 3.7
                    #57, 61, 64, 65, 91, 93, 95,98
9/27M
          \S 3.8
                    Inverse Trigonometric Functions
          \S 3.8
                    #1, 3, 7, 21, 23, 30, 33, 34, 42, 43, 48, 54(HW DUE)
9/29W
          \S 3.9
                    Related Rates
          \S 3.9
                    \#1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19
                    #22, 23, 25, 30, 31, 35
9/30T
          \S 3.9
10/1F
                    Linearization and Differentials
          \S 3.10
                    \#3, 8, 11, 15, 16, 39, 43, 45, 53, 54, 56, 61, 62, [65]
          \S 3.10
10/4M
                    Review for Test II
                    Additional and Advanced Exercises: #6, 8, 19, 20
10/6W
                    Test II and (HW DUE)
                       Chapter 4: Applications of Derivatives
10/7T
          §4.1
                    Extreme Values of Functions
                    \#1-14, 15, 17, 19, 21, 25, 27, 29, 31, 33, 39
          \S 4.1
10/8F
          §4.1
                    \#41, 43, 49, 51, 55, 61, 66, 67, [70], 72
10/11M
          §4.2
                    The Mean Value Theorem
          \S 4.2
                    #5, 6, 7, 9, 12, 13, 15, 19, 23, 25, 27, 31
10/13W
          §4.2
                    #35, 39, 41, 45, 46, 59, 66a (HW DUE)
10/14T
                    Monotonic Functions and the First Derivative Test
          \S 4.3
          \S 4.3
                    \#1, 3, 5, 7, 9, 13, 17, 21, 25, 31, 43, 47, 49, [58]
                    Concavity and Curve Sketching
10/15F
          \S 4.4
          \S 4.4
                    #1, 3, 11, 15, 17, 21
```

```
10/18M
          §4.4
                   #25, 30, 33, 37, 53, 59, 69;
10/20W
                   p. 309: #55, 57, 59 (HW DUE)
          \S 4.4
10/21T
          \S 4.5
                   Applied Optimization
          \S 4.5
                   #1, 3, 4, 5, 7, 11, 12, 14
10/22F
          \S 4.5
                   #20, [22], [24], [25], 27
10/25M
          \S 4.5
                   #32, 33, 41, 44
10/27W
                   Indeterminate Forms and L'Hôpital's Rule
          \S 4.6
          \S 4.6
                   #3, 5, 9, 15, 19, 21, 23, 25 (HW DUE)
10/28T
          \S 4.6
                   #47, 51, 53, 61, 63
11/1M
          \S 4.7
                   Newton's Method
          \S 4.7
                   #1, 3, 5, 13, 16
11/3W
          \S 4.8
                   Antiderivatives
                   #1, 5, 7, 13, 15, 19, 23, 31, 33, 39 (HW DUE)
          \S 4.8
11/4T
                   # 43, 45, 55, 59, 61, 65
          \S 4.8
11/5F
          \S 4.8
                   #87, 89, 91, 95, 103, 117, 118, 119, 120
11/8M
                   Review for Test III
                   Additional and Advanced Exercises: #13, 15, 17, 22, 35
11/10W
                   Test III and (HW DUE)
                                Chapter 5: Integration
11/11T
                   Estimating with Finite Sums, Sigma Notation and Limits of Finite
          §5.1
                   Sums
          \S 5.1
                   \#1, 3, 5, 7, 11, 19, [21, 22]
11/12F
          \S 5.2
                   #1, 3, 7, 9, 13, 15, 19, 29, 35, 39
11/15M
          \S 5.3
                   The Definite Integral
          \S5.3
                   #1, 3, 5, 9, 11, 13, 17, 19, 27, 31, 35
                   #55, 59, 63, 65, 66, [77], [79], [82] (HW DUE)
11/17W
          \S 5.3
11/18T
          \S 5.4
                   The Fundamental Theorem of Calculus
          \S 5.4
                   #1, 3, 5, 7, 9, 11, 17, 23, 27, 29, 33, 35, 39
11/19F
          \S 5.4
                   \#41, 43, 45, 47, 49, 53, 55, 58, 61-64, 73, 75
11/29M
          \S 5.5
                   Indefinite Integrals and the Substitution Rule
          \S 5.5
                   #1, 3, 5, 7, 9, 13, 17, 19, 22, 23, 29
12/1W
          \S5.5
                   #39, 43, 49, 51, 61, 67 (HW DUE)
12/2T
          \S 5.6
                   Substitution and Area Between Curves
                   #1, 3, 7, 13, 25, 27, 31, 39, 47, 51, 53, 55
          \S 5.6
12/3F
                   #57, 67, 77, 81, 85, 89, 99, 103, [115, 116]
          \S 5.6
12/6M
                   Review for Test IV
                   Additional and Advanced Exercises: #4, 5, 6, 30, 31, 32,
                   Leibniz's Rule, 47, 48, 55
12/7T
                   Test IV and (HW DUE)
                   Final Examination Times
12/10
                   1:25-2:15pm \rightarrow 12:00-3:00pm
```

Note that Problems listed in brackets are best saved for the better students, as are the recommended "Additional and Advanced Exercises."

Grading Policy:

TEST I	100 points
TEST II	100 points
TEST III	100 points
TEST IV	100 points
Home Work	200 points
Final Exam.	200 points
Total	800 points

Fixed Scale

The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary